Exposure to mobile phone radiations at 2350 MHz incites cyto- and genotoxic effects in root meristems of Allium cepa

  • Shikha Chandel
  • Shalinder KaurEmail author
  • Mohd Issa
  • Harminder Pal Singh
  • Daizy Rani Batish
  • Ravinder Kumar Kohli
Research Article



The exponential increase of electromagnetic field radiations (EMF-r) in the natural environment has raked up the controversies regarding their biological effects. Concern regarding the putative capacity of EMF-r to affect living beings has been growing due to the ongoing elevation in the use of high frequency EMF-r in communication systems, e.g. Mobile phones.


In the present study, we tried to examine the cyto- and genotoxic potential of mobile phone EMF-r at 2350 MHz using onions (Allium cepa L.). Fresh adventitious onion roots were exposed to continuous EMF-r at 2350 MHz for different time periods (1 h, 2 h and 4 h). The evaluation of cytotoxicity was done in terms of mitotic index (MI), phase index and chromosomal aberrations. Genotoxicity was investigated employing comet assay in terms of changes in % HDNA (head DNA) and % TDNA (tail DNA), TM (tail moment) and OTM (olive tail moment). Data were analyzed using one-way ANOVA and mean values were separated using post hoc Tukey’s test.


The results manifested a significant increase of MI and chromosomal aberrations (%) upon 4 h, and ≥ 2 h of exposure, respectively, as compared to the control. No specific changes in phase index in response to EMF-r exposure were observed. The % HDNA and % TDNA values exhibited significant changes in contrast to that of control upon 2 h and 4 h of exposure, respectively. However, TM and OTM did not change significantly.


Our results infer that continuous exposures of radiofrequency EMF-r (2350 MHz) for long durations have a potential of inciting cyto- and genotoxic effects in onion root meristems.


Electromagnetic field radiations Mitotic index Chromosomal aberrations DNA damage 



Authors are highly grateful to Science and Engineering Research Board, Department of Science and Technology, New Delhi, India, for financial assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Elwood JM. Epidemiological studies of radio frequency exposures and human cancer. Bioelectromagnetics. 2003;24(S6):63–73.Google Scholar
  2. 2.
    Sharma VP, Singh HP, Kohli RK, Batish DR. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ. 2009;407(21):5543–7.Google Scholar
  3. 3.
    ITU (International Telecommunication Union). Global and Regional ICT Data. International Telecommunication Union. 2018. 2018. Accessed 15 July 2018.
  4. 4.
    Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, Persson BR, et al. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics. 2005;26(3):173–84.Google Scholar
  5. 5.
    Hardell L, Carlberg M. Mobile phones, cordless phones and the risk for brain tumours. Int J Oncol. 2009;35(1):5–17.Google Scholar
  6. 6.
    Sepehrimanesh M, Azarpira N, Saeb M, Nazifi S, Kazemipour N, Koohi O. Pathological changes associated with experimental 900-MHz electromagnetic wave exposure in rats. Comp Clin Path. 2014;23(5):1629–31.Google Scholar
  7. 7.
    Vácha M, Půžová T, Kvíćalová M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol. 2009;212(21):3473–7.Google Scholar
  8. 8.
    Sharma VP, Singh HP, Batish DR, Kohli RK. Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations. Z Naturforsch. 2010;65(1–2):66–72.Google Scholar
  9. 9.
    IARC (International Agency for Research on Cancer). Press release no. 208. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. IARC, France. 2018. 2011. Accessed 15 July 2018.
  10. 10.
    Singh HP, Sharma VP, Batish DR, Kohli RK. Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess. 2012;184(4):1813–21.Google Scholar
  11. 11.
    Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Ž. Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat Res. 2009;672(2):76–81.Google Scholar
  12. 12.
    Tambiev AK, Kirikova NN. Effect of EHF radiation on metabolism of cyanobacteria Spirulina platensis and other photosynthesizing organisms. Crit Rev Biomed Eng. 2000;28(3&4):589–602.Google Scholar
  13. 13.
    Atak Ç, Emiroǧlu Ö, Alikamanoǧlu S, Rzakoulieva A. Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. J Cell Mol Biol. 2003;2(2):113–9.Google Scholar
  14. 14.
    Challis LJ. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics. 2005;26:S98–106.Google Scholar
  15. 15.
    Kivrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5:167–76.Google Scholar
  16. 16.
    Culkin KA, Fung DY. Destruction of Escherichia coli and Salmonella typhimurium in microwave-cooked soups. J Milk Food Technol. 1975;38(1):8–15.Google Scholar
  17. 17.
    Singh SP, Rai S, Rai AK, Tiwari SP, Singh SS, Abraham J. Athermal physiological effects of microwaves on a cynobacterium Nostoc muscorum: evidence for EM-memory bits in water. Med Biol Eng Comp. 1994;32(2):175–80.Google Scholar
  18. 18.
    Ivancsits S, Diem E, Pilger A, Rüdiger HW, Jahn O. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 2002;519(1):1–3.Google Scholar
  19. 19.
    Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res. 2005;583(2):178–83.Google Scholar
  20. 20.
    Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F, et al. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res. 2010;683(1):35–42.Google Scholar
  21. 21.
    Pesnya DS, Romanovsky AV. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res. 2013;750:27–33.Google Scholar
  22. 22.
    Kumar A, Singh HP, Batish DR, Kaur S. Kohli RK. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma. 2016;253(4):1043–9.Google Scholar
  23. 23.
    Çenesiz M, Atakişi O, Akar A, Önbilgin G, Ormanc N. Effects of 900 and 1800 MHz electromagnetic field application on electrocardiogram, nitric oxide, total antioxidant capacity, total oxidant capacity, total protein, albumin and globulin levels in Guinea pigs. Kafkas Univ Vet Fak Derg. 2011;17:357–62.Google Scholar
  24. 24.
    Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy). 1997. Accessed 10 June 2018.
  25. 25.
    Armbruster BL, Molin WT, Bugg MW. Effects of the herbicide dithiopyr on cell division in wheat root tips. Pest Biochem Physiol. 1991;39(2):110–20.Google Scholar
  26. 26.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21.Google Scholar
  27. 27.
    Lai H, Singh NP. Melatonin and N-tert-butyl-α-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 1997;22(3):152–62.Google Scholar
  28. 28.
    Wu RY, Chiang H, Shao BJ, Li NG. Fu YD. effects of 2.45-GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice. Bioelectromagnetics. 1994;15(6):531–8.Google Scholar
  29. 29.
    Răcuciu MI, Miclăuş SI. Low-level 900 MHz electromagnetic field influence on vegetal tissue. Rom J Biophys. 2007;17(3):149–56.Google Scholar
  30. 30.
    Pesnya DS, Romanovsky AV. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res. 2013;750(1):27–33.Google Scholar
  31. 31.
    Răcuciu M, Iftode C, Miclaus S. Influence of 1 GHz radiation at low specific absorption rate of energy deposition on plant mitotic division process. Int J Environ Sci Technol. 2018;15:1233–42.Google Scholar
  32. 32.
    Velizarov S, Raskmark P, Kwee S. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem Bioenerg. 1999;48(1):177–80.Google Scholar
  33. 33.
    Pacini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Gulisano M. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res. 2002;13(1):19–24.Google Scholar
  34. 34.
    Choudhary S, Ansari MY, Khan Z, Gupta H. Cytotoxic action of lead nitrate on cytomorphology of Trigonella foenum-graecum L. Turk J Biol. 2012;36(3):267–73.Google Scholar
  35. 35.
    Kumar G, Rai PK. EMS induced karyomorphological variations in maize (Zea mays L.) inbreds. Turk J Biol. 2007;31(4):187–95.Google Scholar
  36. 36.
    Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M. Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips. Mutagenesis. 2015;31(2):187–92.Google Scholar
  37. 37.
    Dash S, Panda KK, Panda BB. Biomonitoring of low levels of mercurial derivatives in water and soil by Allium micronucleus assay. Mutat Res. 1988;203(1):11–21.Google Scholar
  38. 38.
    Mihai CT, Rotinberg P, Brinza F, Vochita G. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Environ Health Sci Eng. 2014;12(1):15.Google Scholar
  39. 39.
    Phillips JL, Ivaschuk O, Ishida-Jones T, Jones RA, Campbell-Beachler M. Haggren W. DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem Bioenerg. 1998;45(1):103–10.Google Scholar
  40. 40.
    Ahuja YR, Vijayashree B, Saran R, Jayashri EL, Manoranjani JK, Bhargava SC. In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J Biochem Biophys. 1999;36(5):318–22.Google Scholar
  41. 41.
    Ivancsits S, Diem E, Jahn O, Rüdiger HW. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 2003;76(6):431–6.Google Scholar
  42. 42.
    Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, et al. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 2006;602(1):135–42.Google Scholar
  43. 43.
    Verschaeve L, Slaets D, Van Gorp U, Maes A, Vanderkom J. In vitro and in vivo genetic effects of microwaves from mobile phone frequencies in human and rat peripheral blood lymphocytes. In: Simunic D, editor. Proceedings of cost 244 meetings on Mobile communication and extremely low frequency field: instrumentation and measurements in bioelectromagnetics research; 1994. p. 74–83.Google Scholar
  44. 44.
    Çam ST, Seyhan N. Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int J Radiat Biol. 2012;88(5):420–4.Google Scholar
  45. 45.
    Hekmat A, Saboury AA, Moosavi-Movahedi AA. The toxic effects of mobile phone radiofrequency (940 MHz) on the structure of calf thymus DNA. Ecotoxicol Environ Saf. 2013;88:35–41.Google Scholar
  46. 46.
    Blank M, Goodman R. DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol. 2011;87(4):409–15.Google Scholar
  47. 47.
    Tkalec M, Malarić K, Pevalek-Kozlina B. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Total Environ. 2007;388(1–3):78–89.Google Scholar
  48. 48.
    De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446.Google Scholar
  49. 49.
    Sykes PJ, McCallum BD, Bangay MJ, Hooker AM, Morley AA. Effect of exposure to 900 MHz radiofrequency radiation on intrachromosomal recombination in pKZ1 mice. Radiat Res. 2001;156(5):495–502.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shikha Chandel
    • 1
  • Shalinder Kaur
    • 1
    Email author
  • Mohd Issa
    • 2
  • Harminder Pal Singh
    • 2
  • Daizy Rani Batish
    • 1
  • Ravinder Kumar Kohli
    • 1
    • 3
  1. 1.Department of BotanyPanjab UniversityChandigarhIndia
  2. 2.Department of Environment StudiesPanjab UniversityChandigarhIndia
  3. 3.Central University of PunjabBathindaIndia

Personalised recommendations