Skip to main content

Advertisement

Log in

The effect of incretin-based drugs on the riks of acute pancreatitis: a review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

In recent years, new hypoglycaemic drugs that affect the incretin system have become increasingly popular in the treatment of type 2 diabetes mellitus (T2DM): glucagon-like receptor 1 agonists (GLP1RAs), dipeptidyl peptidase 4 inhibitors (DPP4is) and the recently developed dual glucagon-like receptor 1 agonist and glucose-dependent insulinotropic polypeptide (tirzepatide). Their main role of these drugs is to normalise blood glucose levels. In addition, GLP1RAs are approved for the treatment of excessive body weight. The efficacy of drugs affecting the incretin system is well described in the literature, however, there are still only few reports about their safety. This review aims to summarize the results of current research and meta-analyses on risk of acute pancreatitis (AP) during incretin-affecting drugs treatment.

Methods

A narrative review was performed using present literature in an attempt to identify the relationship between AP and incretin-affecting drugs. The following keywords were used: acute pancreatitis, glucagon-like receptor 1 agonists, dipeptidyl peptidase 4 inhibitors and tirzepatide.

Results

It was demonstrated that the use of DPP4is is safe for the majority of patients with T2DM, whereas a risk of AP should be noted in case of GLP1RAs therapy. To date, most studies found no significant association between tirzepatide therapy and the increased risk of AP.

Conclusion

The majority of studies have shown that DPP4is, GLP1RAs and tirzepatide are effective and safe in most T2DM patients. However, the follow-up time for patients treated with tirzepatide is short, therefore more studies are required to confirm the safety of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang YW, Lin JH, Yang CS. Meta-analysis of the association between new hypoglycemic agents and digestive diseases. Med (Baltim). 2022;101(34):e30072. https://doi.org/10.1097/MD.0000000000030072.

    Article  CAS  Google Scholar 

  2. Vázquez LA, Romera I, Rubio-de Santos M, Escalada J. Glycaemic Control and Weight reduction: a narrative review of New therapies for type 2 diabetes. Diabetes Ther. 2023;14(11):1771–84. https://doi.org/10.1007/s13300-023-01467-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chobot A, Górowska-Kowolik K, Sokołowska M, Jarosz-Chobot P. Obesity and diabetes-not only a simple link between two epidemics. Diabetes Metab Res Rev. 2018;34(7):e3042. https://doi.org/10.1002/dmrr.3042.

    Article  PubMed  PubMed Central  Google Scholar 

  4. American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of Care in Diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S20–42. https://doi.org/10.2337/dc24-S002.

    Article  Google Scholar 

  5. American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to Glycemic Treatment: standards of Care in Diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S158–78. https://doi.org/10.2337/dc24-S009.

    Article  Google Scholar 

  6. Lavie CJ, Laddu D, Arena R, Ortega FB, Alpert MA, Kushner RF. Healthy Weight and Obesity Prevention: JACC Health Promotion Series. J Am Coll Cardiol. 2018;72(13):1506–31. https://doi.org/10.1016/j.jacc.2018.08.1037.

    Article  PubMed  Google Scholar 

  7. Toth-Manikowski S, Atta MG. Diabetic kidney disease: pathophysiology and therapeutic targets. J Diabetes Res. 2015;2015:697010. https://doi.org/10.1155/2015/697010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Ruan B, Jiang H, Le S, Liu Y, Ao X, et al. The weight-loss effect of GLP-1RAs glucagon-like Peptide-1 receptor agonists in non-diabetic individuals with overweight or obesity: a systematic review with Meta-Analysis and Trial Sequential Analysis of Randomized controlled trials. Am J Clin Nutr. 2023;118(3):614–26. https://doi.org/10.1016/j.ajcnut.2023.04.017.

    Article  CAS  PubMed  Google Scholar 

  9. Roussey B, Calame P, Revel L, Zver T, Konan A, Piton G, et al. Liver spontaneous hypoattenuation on CT is an imaging biomarker of the severity of acute pancreatitis. Diagn Interv Imaging. 2022;103(9):401–7. https://doi.org/10.1016/j.diii.2022.03.008.

    Article  PubMed  Google Scholar 

  10. Kinoshita H, Zhang J, Ponthisarn A, Sharma M, Binh N, Siam A, et al. Clinical practice guidelines in the diagnosis and management of acute pancreatitis. Med Studies/Studia Medyczne. 2019;35(4):304–11. https://doi.org/10.5114/ms.2019.91248.

    Article  Google Scholar 

  11. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–11. https://doi.org/10.1136/gutjnl-2012-302779.

    Article  PubMed  Google Scholar 

  12. Szatmary P, Grammatikopoulos T, Cai W, Huang W, Mukherjee R, Halloran C. et al Acute Pancreatitis: Diagnosis Treat Drugs. 2022;82(12):1251–76. https://doi.org/10.1007/s40265-022-01766-4.

    Article  Google Scholar 

  13. Goodarzi MO, Petrov MS. Diabetes of the exocrine pancreas: implications for Pharmacological Management. Drugs. 2023;83(12):1077–90. https://doi.org/10.1007/s40265-023-01913-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boer GA, Holst JJ. Incretin Hormones and type 2 diabetes-mechanistic insights and therapeutic approaches. Biology (Basel). 2020;9(12):473. https://doi.org/10.3390/biology9120473.

    Article  CAS  PubMed  Google Scholar 

  15. Gumieniczek A, Berecka-Rycerz A. Metabolism and chemical degradation of New Antidiabetic drugs: a review of Analytical approaches for Analysis of Glutides and Gliflozins. Biomedicines. 2023;11(8):2127. https://doi.org/10.3390/biomedicines11082127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig. 2010;1(1–2):8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sfairopoulos D, Liatis S, Tigas S, Liberopoulos E. Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Horm (Athens). 2018;17(3):333–50. https://doi.org/10.1007/s42000-018-0038-0.

    Article  Google Scholar 

  18. Popoviciu MS, Păduraru L, Yahya G, Metwally K, Cavalu S. Emerging role of GLP-1 agonists in obesity: a Comprehensive Review of Randomised controlled trials. Int J Mol Sci. 2023;24(13):10449. https://doi.org/10.3390/ijms241310449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cesaro A, De Michele G, Fimiani F, Acerbo V, Scherillo G, Signore G, et al. Visceral adipose tissue and residual cardiovascular risk: a pathological link and new therapeutic options. Front Cardiovasc Med. 2023;10:1187735. https://doi.org/10.3389/fcvm.2023.1187735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi FH, Li H, Cui M, Zhang ZL, Gu ZC, Liu XY. Efficacy and safety of once-weekly semaglutide for the treatment of type 2 diabetes: a systematic review and Meta-analysis of Randomized controlled trials. Front Pharmacol. 2018;9:576. https://doi.org/10.3389/fphar.2018.00576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao C, Liang X, Zhang X, Li Y. The effects of GLP-1 receptor agonists on visceral fat and liver ectopic fat in an adult population with or without diabetes and nonalcoholic fatty liver disease: a systematic review and meta-analysis. PLoS ONE. 2023;18(8):e0289616. https://doi.org/10.1371/journal.pone.0289616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102.

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Chen J, Wang L, Chen C, Chen L. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol (Lausanne). 2022;13:1043789. https://doi.org/10.3389/fendo.2022.1043789.

    Article  PubMed  Google Scholar 

  24. El-Arabey AA, Zhang H, Abdalla M, Al-Shouli ST, Alkhalil SS, Liu Y. Metformin as a promising target for DPP4 expression: computational modeling and experimental validation. Med Oncol. 2023;40(10):277. https://doi.org/10.1007/s12032-023-02140-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen SY, Kong XQ, Zhang KF, Luo S, Wang F, Zhang JJ. DPP4 as a potential candidate in Cardiovascular Disease. J Inflamm Res. 2022;15:5457–69. https://doi.org/10.2147/JIR.S380285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deacon CF. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16(11):642–53. https://doi.org/10.1038/s41574-020-0399-8.

    Article  CAS  PubMed  Google Scholar 

  27. Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol. 2015;6:386. https://doi.org/10.3389/fimmu.2015.0038.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bernardini F, Nusca A, Coletti F, La Porta Y, Piscione M, Vespasiano F, et al. Incretins-based therapies and their Cardiovascular effects: New Game-Changers for the management of patients with diabetes and Cardiovascular Disease. Pharmaceutics. 2023;15(7):1858. https://doi.org/10.3390/pharmaceutics15071858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scirica BM, Im K, Murphy SA, Kuder JF, Rodriguez DA, Lopes RD, et al. Re-adjudication of the Trial evaluating Cardiovascular outcomes with Sitagliptin (TECOS) with study-level meta-analysis of hospitalization for heart failure from cardiovascular outcomes trials with dipeptidyl peptidase-4 (DPP-4) inhibitors. Clin Cardiol. 2022;45(7):794–801. https://doi.org/10.1002/clc.23844.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seino Y, Kaku K, Kadowaki T, Okamoto T, Sato A, Shirakawa M, et al. A randomized, placebo-controlled trial to assess the efficacy and safety of sitagliptin in Japanese patients with type 2 diabetes and inadequate glycaemic control on ipragliflozin. Diabetes Obes Metab. 2021;23(6):1342–50. https://doi.org/10.1111/dom.14346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J, He K, Ge J, Li C, Jing Z. Efficacy and safety of the glucagon-like peptide-1 receptor agonist oral semaglutide in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2021;172:108656. https://doi.org/10.1016/j.diabres.2021.108656.

    Article  CAS  PubMed  Google Scholar 

  32. Tseng CM, Liao WC, Chang CY, Lee CT, Tseng CH, Hsu YC, et al. Incretin-based pharmacotherapy and risk of adverse pancreatic events in the ethnic Chinese with diabetes mellitus: a population-based study in Taiwan. Pancreatology. 2017;17(1):76–82. https://doi.org/10.1016/j.pan.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  33. Storgaard H, Cold F, Gluud LL, Vilsbøll T, Knop FK. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19(6):906–8. https://doi.org/10.1111/dom.12885.

    Article  CAS  PubMed  Google Scholar 

  34. Singh AK, Gangopadhyay KK, Singh R. Risk of acute pancreatitis with incretin-based therapy: a systematic review and updated meta-analysis of cardiovascular outcomes trials. Expert Rev Clin Pharmacol. 2020;13(4):461–8. https://doi.org/10.1080/17512433.2020.1736041.

    Article  CAS  PubMed  Google Scholar 

  35. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183.

    Article  CAS  PubMed  Google Scholar 

  36. Shu Y, He X, Wu P, Liu Y, Ding Y, Zhang Q. Gastrointestinal adverse events associated with semaglutide: a pharmacovigilance study based on FDA adverse event reporting system. Front Public Health. 2022;10:996179. https://doi.org/10.3389/fpubh.2022.996179.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aroda VR, Erhan U, Jelnes P, Meier JJ, Abildlund MT, Pratley R, et al. Safety and tolerability of semaglutide across the SUSTAIN and PIONEER phase IIIa clinical trial programmes. Diabetes Obes Metab. 2023;25(5):1385–97. https://doi.org/10.1111/dom.14990.

    Article  CAS  PubMed  Google Scholar 

  38. Javed H, Kogilathota Jagirdhar GS, Kashyap R, Vekaria PH. Liraglutide-Induced Pancreatitis: a Case Report and Literature Review. Cureus. 2023;15(4):e38263. https://doi.org/10.7759/cureus.38263.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jensen TM, Saha K, Steinberg WM. Is there a link between liraglutide and pancreatitis? A post hoc review of pooled and patient-level data from completed liraglutide type 2 diabetes clinical trials. Diabetes Care. 2015;38(6):1058–66. https://doi.org/10.2337/dc13-1210.

    Article  CAS  PubMed  Google Scholar 

  40. Caparrotta TM, Templeton JB, Clay TA, Wild SH, Reynolds RM, Webb DJ, et al. Glucagon-like peptide 1 receptor agonist (GLP1RA) exposure and outcomes in type 2 diabetes: a systematic review of Population-based Observational studies. Diabetes Ther. 2021;12(4):969–89. https://doi.org/10.1007/s13300-021-01021-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nauck M, Weinstock RS, Umpierrez GE, Guerci B, Skrivanek Z, Milicevic Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care. 2014;37(8):2149–58. https://doi.org/10.2337/dc13-2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chin R, Nagaoka S, Nakasawa H, Tanaka Y, Inagaki N. Safety and effectiveness of dulaglutide 0.75 mg in Japanese patients with type 2 diabetes in real-world clinical practice: 36 month post-marketing observational study. J Diabetes Investig. 2023;14(2):247–58. https://doi.org/10.1111/jdi.13932.

    Article  CAS  PubMed  Google Scholar 

  43. Al-Kawas F, Anderson MA, Enns R, Wilson TH, Johnson S, Mallory JM, PANCREATIC SAFETY IN STUDIES OF THE GLUCAGON-LIKE PEPTIDE-1 RECEPTOR AGONIST ALBIGLUTIDE. Endocr Pract. 2019;25(7):698–716. https://doi.org/10.4158/EP-2018-0507.

    Article  PubMed  Google Scholar 

  44. Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Sr, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  CAS  PubMed  Google Scholar 

  45. Shahbazi M, Qudsiya Z, Fahel A, Amini A, Tanoli T. First reported case of Dulaglutide-Induced Acute Pancreatitis with normal serum lipase level. Cureus. 2023;15(6):e40576. https://doi.org/10.7759/cureus.40576.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khan AB, Shah A, Ahmad S, Khan MI, Amir A. Dulaglutide (Trulicity)-Induced Acute Pancreatitis: a Case Report. Cureus. 2023;15(5):e38630. https://doi.org/10.7759/cureus.38630.

    Article  PubMed  PubMed Central  Google Scholar 

  47. AlSaadoun AR, AlSaadoun TR, Al Ghumlas AK. Liraglutide Overdose-Induced Acute Pancreatitis. Cureus. 2022;14(1):e21616. https://doi.org/10.7759/cureus.21616.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dolan RD, Bazarbashi AN, Lo A, Smith BN. Liraglutide-Induced Hemorrhagic Pancreatitis in a nondiabetic patient. ACG Case Rep J. 2020;7(5):e00380. https://doi.org/10.14309/crj.0000000000000380.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI, CONSENSUS STATEMENT BY THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY ON THE COMPREHENSIVE TYPE, et al. 2 DIABETES MANAGEMENT ALGORITHM– 2020 EXECUTIVE SUMMARY. Endocr Pract. 2020;26(1):107–39. https://doi.org/10.4158/CS-2019-0472.

    Article  PubMed  Google Scholar 

  50. Yabe D, Kuwata H, Kaneko M, Ito C, Nishikino R, Murorani K, et al. Use of the Japanese health insurance claims database to assess the risk of acute pancreatitis in patients with diabetes: comparison of DPP-4 inhibitors with other oral antidiabetic drugs. Diabetes Obes Metab. 2015;17(4):430–4. https://doi.org/10.1111/dom.12381.

    Article  CAS  PubMed  Google Scholar 

  51. Azoulay L, Filion KB, Platt RW, Dahl M, Dormuth CR, Clemens KK, et al. Association between Incretin-based drugs and the risk of Acute Pancreatitis. JAMA Intern Med. 2016;176(10):1464–73. https://doi.org/10.1001/jamainternmed.2016.1522.

    Article  PubMed  Google Scholar 

  52. Ueki K, Tanizawa Y, Nakamura J, Yamada Y, Inagaki N, Watada H, et al. Long-term safety and efficacy of alogliptin, a DPP-4 inhibitor, in patients with type 2 diabetes: a 3-year prospective, controlled, observational study (J-BRAND Registry). BMJ Open Diabetes Res Care. 2021;9(1):e001787. https://doi.org/10.1136/bmjdrc-2020-001787.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee M, Sun J, Han M, Cho Y, Lee JY, Nam CM, et al. Nationwide trends in Pancreatitis and Pancreatic Cancer Risk among patients with newly diagnosed type 2 diabetes receiving Dipeptidyl Peptidase 4 inhibitors. Diabetes Care. 2019;42(11):2057–64. https://doi.org/10.2337/dc18-2195.

    Article  CAS  PubMed  Google Scholar 

  54. Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of Acute Pancreatitis in patients with type 2 diabetes. Diabetes Care. 2017;40(2):284–6. https://doi.org/10.2337/dc15-1707.

    Article  CAS  PubMed  Google Scholar 

  55. Sayiner ZA, Inan Demiroğlu G, Akarsu E, Araz M. The relationship between Dipeptidyl Peptidase-4 inhibitor usage and Asymptomatic Amylase Lipase Increment in type 2 diabetes Mellitus patients. Turk J Pharm Sci. 2020;17(1):68–73. https://doi.org/10.4274/tjps.galenos.2018.83788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dahl D, Onishi Y, Norwood P, Huh R, Bray R, Patel H, et al. Effect of Subcutaneous Tirzepatide vs Placebo added to titrated insulin glargine on Glycemic Control in patients with type 2 diabetes: the SURPASS-5 Randomized Clinical Trial. JAMA. 2022;327(6):534–45. https://doi.org/10.1001/jama.2022.0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karagiannis T, Avgerinos I, Liakos A, Del Prato S, Matthews DR, Tsapas A, et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia. 2022;65(8):1251–61. https://doi.org/10.1007/s00125-022-05715-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie Z, Hu J, Gu H, Li M, Chen J. Comparison of the efficacy and safety of 10 glucagon-like peptide-1 receptor agonists as add-on to metformin in patients with type 2 diabetes: a systematic review. Front Endocrinol (Lausanne). 2023;14:1244432. https://doi.org/10.3389/fendo.2023.1244432.

    Article  PubMed  Google Scholar 

  59. Mishra R, Raj R, Elshimy G, Zapata I, Kannan L, Majety P, et al. Adverse events related to Tirzepatide. J Endocr Soc. 2023;7(4):bvad016. https://doi.org/10.1210/jendso/bvad016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang Y, Zhang L, Zeng Y, Wang X, Zhang M. Efficacy and safety of tirzepatide in patients with type 2 diabetes: a systematic review and meta-analysis. Front Pharmacol. 2022;13:1016639. https://doi.org/10.3389/fphar.2022.1016639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, et al. Tirzepatide versus Semaglutide once Weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15. https://doi.org/10.1056/NEJMoa2107519.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization, review and editing of the manuscript. All authors approved the final manuscript for submission.

Ethics declarations

Conflict of interest

None.

Financial interests

The authors declare they have no financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaplicka, A., Kaleta, B. The effect of incretin-based drugs on the riks of acute pancreatitis: a review. J Diabetes Metab Disord 23, 487–495 (2024). https://doi.org/10.1007/s40200-024-01430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-024-01430-6

Keywords

Navigation