Skip to main content
Log in

Association between DASH and novel atherogenic risk factors, anthropometric indices and foot ulcer indicators in type 2 diabetic patients with foot ulcer: a cross-sectional study

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Diabetes can cause nerve damage, vascular issues, and reduced blood flow to organs such as the feet, leading to foot deformities and ulcers due to high glucose levels. A healthy dietary pattern like DASH can improve insulin sensitivity and weight loss. Due to limited data and rare evidence, our study aims to investigate the relationship between DASH diet adherence and anthropometric, cardiovascular, and foot ulcer indicators.

Methods

The study included 339 diabetic patients with foot ulcers (122 females and 217 males). The study gathered data on patient dietary intake, anthropometric measurements, biochemistry, foot ulcers, and novel atherogenic risk factors per international definitions.

Results

The average BMI of the participants was 29.2 ± 5.0, 28.1 ± 4.3, and 28.2 ± 4.2 in the tertiles of DASH index (P-value: 0.18). By increasing the adherence to the DASH index, the monofilament score did not change significantly OR: 1.47; CI: (0.81-2.67). Also, foot ulcer area did not change significantly between DASH tertiles OR: 1.01; CI: (0.56-1.83). Atherogenic risk factors also decreased among the DASH tertiles, but statistically not significant.

Conclusion

DASH adherence did not change neuropathy score and cholindex and cardiovascular risk factors significantly and has no significant effect on foot ulcer size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data, which is mentioned in the manuscript, will be made available upon request from the authors. Please feel free to contact the authors for access to the data.

Notes

  1. Metabolic equivalent

  2. Major adverse cardiovascular events

  3. Myocardial infarction

  4. Coronary artery bypass graft

  5. Coronary artery disease

  6. Cardiovascular

Abbreviations

DASH:

Dietary Approaches to Stop Hypertension

WC:

Waist Circumference

HC:

Hip Circumference

BMI:

Body Mass Index

SES:

Socioeconomic Status

MACE:

Major Adverse Cardiovascular Events

SBP:

Systolic Blood Pressure

DBP:

Diastolic Blood Pressure

FBS:

Fasting Blood Sugar

HbA1C:

Hemoglobin A1C

TC:

Total Cholesterol

TG:

Triglycerides

HDL-C:

High Density Lipoprotein cholesterol

LDL-C:

Low Density Lipoprotein cholesterol

ABSI:

A Body Shape Index

BRI:

Body Roundness Index

AVI:

Abdominal Volume Index

CRI-1:

Castelli Index-I

CRI-II:

Castelli Index-II

CI:

Cholesterol Index

AIP:

Atherogenic Index of Plasma

LAP:

Lipid Accumulation Plasma

CVD:

Cardiovascular Disease

References

  1. Basiri R, Spicer MT, Ledermann T, Arjmandi BH. Effects of nutrition intervention on blood glucose, body composition, and phase angle in obese and overweight patients with diabetic foot ulcers. Nutrients. 2022;14(17):3564. https://doi.org/10.3390/nu14173564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–75. https://doi.org/10.1056/NEJMra1615439.

    Article  PubMed  Google Scholar 

  3. Yazdanpanah L, Shahbazian H, Nazari I, Arti HR, Ahmadi F, Mohammadianinejad SE, Cheraghian B, Latifi SM. Prevalence and related risk factors of diabetic foot ulcer in Ahvaz, south west of Iran. Diabetes Metab Syndr. 2018;12(4):519–24. https://doi.org/10.1016/j.dsx.2018.03.018.

    Article  PubMed  Google Scholar 

  4. Armstrong DG, Hanft JR, Driver VR, Smith AP, Lazaro-Martinez JL, Reyzelman AM, Furst GJ, Vayser DJ, Cervantes HL, Snyder RJ, Moore MF, May PE, Nelson JL, Baggs GE, Voss AC. Effect of oral nutritional supplementation on wound healing in diabetic foot ulcers: a prospective randomized controlled trial. Diabet Med. 2014;31(9):1069–77. https://doi.org/10.1111/dme.12509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Armstrong DG, Lavery LA, Harkless LB. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care. 1998;21(5):855–9. https://doi.org/10.2337/diacare.21.5.855.

    Article  CAS  PubMed  Google Scholar 

  6. Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and Cardiovascular diseases. Circ Res. 2020;126(11):1477–500. https://doi.org/10.1161/circresaha.120.316101.

    Article  PubMed  Google Scholar 

  7. Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315. https://doi.org/10.1016/j.biopha.2021.111315.

    Article  CAS  PubMed  Google Scholar 

  8. He S, Chen X. Could the new body shape index predict the new onset of diabetes mellitus in the Chinese population? PLoS ONE. 2013;8(1):e50573. https://doi.org/10.1371/journal.pone.0050573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, Maeda Y, McDougall A, Peterson CM, Ravussin E, Heymsfield SB. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obes (Silver Spring). 2013;21(11):2264–71. https://doi.org/10.1002/oby.20408.

    Article  Google Scholar 

  10. Liu B, Liu B, Wu G, Yin F. Relationship between body-roundness index and metabolic syndrome in type 2 diabetes. Diabetes Metab Syndr Obes. 2019;12:931–5. https://doi.org/10.2147/dmso.S209964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geraci G, Zammuto M, Gaetani R, Mattina A, D’Ignoto F, Geraci C, Noto D, Averna M, Cottone S, Mulè G. Relationship of a body shape index and body roundness index with carotid atherosclerosis in arterial hypertension. Nutr Metab Cardiovasc Dis. 2019;29(8):822–9. https://doi.org/10.1016/j.numecd.2019.04.013.

    Article  PubMed  Google Scholar 

  12. Guerrero-Romero F, Rodríguez-Morán M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch Med Res. 2003;34(5):428–32. https://doi.org/10.1016/s0188-4409(03)00073-0.

    Article  PubMed  Google Scholar 

  13. Okamoto M, Nakamura F, Musha T, Kobayashi Y. Association between novel arterial stiffness indices and risk factors of cardiovascular disease. BMC Cardiovasc Disord. 2016;16(1):211. https://doi.org/10.1186/s12872-016-0389-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu X, Appleton AA, Ou Y, Zhang Y, Cai A, Zhou Y, Dong H. Abdominal volume index trajectories and risk of diabetes mellitus: results from the China Health and Nutrition Survey. J Diabetes Investig. 2022;13(5):868–77. https://doi.org/10.1111/jdi.13733.

    Article  PubMed  Google Scholar 

  15. Sabarinathan M, Ds DR, Ananthi N, Krishnan M. Atherogenic index of plasma, lipid accumulation and visceral adiposity in metabolic syndrome patients. Bioinformation. 2022;18(11):1109–13. https://doi.org/10.6026/973206300181109.

    Article  Google Scholar 

  16. Fu L, Zhou Y, Sun J, Zhu Z, Xing Z, Zhou S, Wang Y, Tai S. Atherogenic index of plasma is associated with major adverse cardiovascular events in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2021;20(1):201. https://doi.org/10.1186/s12933-021-01393-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akpınar O, Bozkurt A, Acartürk E, Seydaoğlu G. A new index (CHOLINDEX) in detecting coronary artery disease risk. Anadolu Kardiyol Derg. 2013;13(4):315–9. https://doi.org/10.5152/akd.2013.098.

    Article  CAS  PubMed  Google Scholar 

  18. Nunes SH, Nogueira Saad MA, da Cruz Filho RA, Jorge AJL, Santos M, Martins WA, Campos TL, Rosa MLG. Is lipid accumulation product a better cardiovascular risk predictor in elderly individuals than anthropometric measures? Rev Port Cardiol (Engl Ed). 2021;40(8):539–44. https://doi.org/10.1016/j.repce.2020.09.007.

    Article  PubMed  Google Scholar 

  19. Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, Hermansen K, Pfeiffer A, Thanopoulou A, Salas-Salvadó J, Schwab U, Sievenpiper JL. Prevention of type 2 diabetes by Lifestyle changes: a systematic review and Meta-analysis. Nutrients. 2019;11(11):2611. https://doi.org/10.3390/nu11112611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martínez García RM, Fuentes Chacón RM, Lorenzo Mora AM, Ortega Anta RM. Nutrition in the prevention and healing of chronic wounds. Importance in improving the diabetic foot. Nutr Hosp. 2021;38(Spec No2):60–3. https://doi.org/10.20960/nh.03800.

  21. Stechmiller JK. Understanding the role of nutrition and wound healing. Nutr Clin Pract. 2010;25(1):61–8. https://doi.org/10.1177/0884533609358997.

    Article  PubMed  Google Scholar 

  22. Nestel PJ, Mori TA. Dietary patterns, dietary nutrients and cardiovascular disease. Rev Cardiovasc Med. 2022;23(1):17. https://doi.org/10.31083/j.rcm2301017.

    Article  PubMed  Google Scholar 

  23. Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr. 2016;7(3):445–54. https://doi.org/10.3945/an.115.011718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiavaroli L, Viguiliouk E, Nishi SK, Blanco Mejia S, Rahelić D, Kahleová H, Salas-Salvadó J, Kendall CW, Sievenpiper JL. DASH dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients. 2019;11(2). https://doi.org/10.3390/nu11020338

  25. Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29(7–8):939–47. https://doi.org/10.1016/j.nut.2012.12.021.

    Article  PubMed  Google Scholar 

  26. Razavi Zade M, Telkabadi MH, Bahmani F, Salehi B, Farshbaf S, Asemi Z. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: a randomized clinical trial. Liver Int. 2016;36(4):563–71. https://doi.org/10.1111/liv.12990.

    Article  CAS  PubMed  Google Scholar 

  27. Ibsen DB, Levitan EB, Åkesson A, Gigante B, Wolk A. The DASH diet is associated with a lower risk of heart failure: a cohort study. Eur J Prev Cardiol. 2022;29(7):1114–23. https://doi.org/10.1093/eurjpc/zwac003.

    Article  PubMed  Google Scholar 

  28. Karanja NM, Obarzanek E, Lin PH, McCullough ML, Phillips KM, Swain JF, Champagne CM, Hoben KP. Descriptive characteristics of the dietary patterns used in the Dietary approaches to stop hypertension trial. DASH Collaborative Research Group. J Am Diet Assoc. 1999;99(8 Suppl):S19-27. https://doi.org/10.1016/s0002-8223(99)00412-5.

    Article  CAS  PubMed  Google Scholar 

  29. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–20. https://doi.org/10.1001/archinte.168.7.713.

    Article  PubMed  Google Scholar 

  30. Panbehkar-Jouybari M, Mollahosseini M, Salehi-Abargouei A, Fallahzadeh H, Mirzaei M, Hosseinzadeh M. The Mediterranean diet and dietary approach to stop hypertension (DASH)-style diet are differently associated with lipid profile in a large sample of Iranian adults: a cross-sectional study of Shahedieh cohort. BMC Endocr Disord. 2021;21(1):192. https://doi.org/10.1186/s12902-021-00856-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monteiro-Soares M, Russell D, Boyko EJ, Jeffcoate W, Mills JL, Morbach S, Game F. Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36(Suppl 1):e3273. https://doi.org/10.1002/dmrr.3273.

    Article  PubMed  Google Scholar 

  32. Wilasrusmee C, Suthakorn J, Guerineau C, Itsarachaiyot Y, Sa-Ing V, Proprom N, Lertsithichai P, Jirasisrithum S, Kittur D. A novel robotic monofilament test for diabetic neuropathy. Asian J Surg. 2010;33(4):193–8. https://doi.org/10.1016/s1015-9584(11)60006-7.

    Article  PubMed  Google Scholar 

  33. Moghaddam MHB, Aghdam F, Asghari Jafarabadi M, Allahverdipour H, Nikookheslat S, Safarpour S. The Iranian version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J. 2012;18:1073–80. https://doi.org/10.5829/idosi.wasj.2012.18.08.754.

    Article  Google Scholar 

  34. Pastori D, Carnevale R, Nocella C, Novo M, Santulli M, Cammisotto V, Menichelli D, Pignatelli P, Violi F. Gut-derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to mediterranean diet. J Am Heart Assoc. 2017;6(6). https://doi.org/10.1161/jaha.117.005784

  35. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE. 2012;7(7):e39504. https://doi.org/10.1371/journal.pone.0039504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Liu X, Guan H, Zhang S, Zhu Q, Fu X, Chen H, Tang S, Feng Y, Kuang J. Body roundness index is a superior obesity index in predicting diabetes risk among hypertensive patients: a prospective cohort study in China. Front Cardiovasc Med. 2021;8:736073. https://doi.org/10.3389/fcvm.2021.736073.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dobiásová M. AIP–atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek. 2006;52(1):64–71.

    PubMed  Google Scholar 

  38. Kaneva AM, Bojko ER. Age-adjusted cut-off values of lipid accumulation product (LAP) for predicting hypertension. Sci Rep. 2021;11(1):11095. https://doi.org/10.1038/s41598-021-90648-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toi PL, Anothaisintawee T, Chaikledkaew U, Briones JR, Reutrakul S, Thakkinstian A. Preventive role of diet interventions and dietary factors in type 2 diabetes mellitus: an umbrella review. Nutrients. 2020;12(9):2722. https://doi.org/10.3390/nu12092722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chiu S, Bergeron N, Williams PT, Bray GA, Sutherland B, Krauss RM. Comparison of the DASH (Dietary approaches to stop hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. Am J Clin Nutr. 2016;103(2):341–7. https://doi.org/10.3945/ajcn.115.123281.

    Article  CAS  PubMed  Google Scholar 

  41. Maddock J, Ziauddeen N, Ambrosini GL, Wong A, Hardy R, Ray S. Adherence to a Dietary approaches to stop hypertension (DASH)-type diet over the life course and associated vascular function: a study based on the MRC 1946 British birth cohort. Br J Nutr. 2018;119(5):581–9. https://doi.org/10.1017/s0007114517003877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Joyce BT, Wu D, Hou L, Dai Q, Castaneda SF, Gallo LC, Talavera GA, Sotres-Alvarez D, Van Horn L, Beasley JM, Khambaty T, Elfassy T, Zeng D, Mattei J, Corsino L, Daviglus ML. DASH diet and prevalent metabolic syndrome in the hispanic community health study/study of Latinos. Prev Med Rep. 2019;15:100950. https://doi.org/10.1016/j.pmedr.2019.100950

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ghorabi S, Salari-Moghaddam A, Daneshzad E, Sadeghi O, Azadbakht L, Djafarian K. Association between the DASH diet and metabolic syndrome components in Iranian adults. Diabetes Metab Syndr. 2019;13(3):1699–704. https://doi.org/10.1016/j.dsx.2019.03.039.

    Article  PubMed  Google Scholar 

  44. Soltani S, Shirani F, Chitsazi MJ, Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Obes Rev. 2016;17(5):442–54. https://doi.org/10.1111/obr.12391.

    Article  PubMed  Google Scholar 

  45. Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509. https://doi.org/10.2217/fca-2018-0045.

    Article  CAS  PubMed  Google Scholar 

  46. Rubio-Almanza M, Cámara-Gómez R, Merino-Torres JF. Obesity and type 2 diabetes: also linked in therapeutic options. Endocrinol Diabetes Nutr (Engl Ed). 2019;66(3):140–9. https://doi.org/10.1016/j.endinu.2018.08.003.

    Article  PubMed  Google Scholar 

  47. Mohamadi A, Shiraseb F, Mirzababaei A, AkbarySedigh A, Ghorbani M, Clark CCT, Aali Y, Mirzaei K. The association between adherence to diet quality index and cardiometabolic risk factors in overweight and obese women: a cross-sectional study. Front Public Health. 2023;11:1169398. https://doi.org/10.3389/fpubh.2023.1169398.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mirzababaei A, Shiraseb F, Abaj F, Khosroshahi RA, Tavakoli A, Koohdani F, Clark CCT, Mirzaei K. The effect of dietary total antioxidant capacity (DTAC) and Caveolin-1 gene variant interaction on cardiovascular risk factors among overweight and obese women: a cross-sectional investigation. Clin Nutr. 2021;40(8):4893–903. https://doi.org/10.1016/j.clnu.2021.07.013.

    Article  CAS  PubMed  Google Scholar 

  49. Agostinis-Sobrinho C, Dias AF, Brand C, Norkiene S, Abreu S, Gaya ACA, Gaya AR, Lopes L, Moreira C, Mota J, Santos R. Adherence to Southern European Atlantic Diet and physical fitness on the atherogenic index of plasma in adolescents. Cad Saude Publica. 2019;35(12):e00200418. https://doi.org/10.1590/0102-311x00200418.

    Article  PubMed  Google Scholar 

  50. Shahdadian F, Saneei P, Lotfi K, Feizi A, Askari G, Safavi SM. Association of plant-based diets with adropin, atherogenic index of plasma, and metabolic syndrome and its components: a cross-sectional study on adults. Front Nutr. 2023;10:1077709. https://doi.org/10.3389/fnut.2023.1077709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Edwards MK, Loprinzi PD. Physical activity and diet on atherogenic index of plasma among adults in the United States: mediation considerations by central adiposity. Eur J Clin Nutr. 2018;72(6):826–31. https://doi.org/10.1038/s41430-017-0066-x.

    Article  PubMed  Google Scholar 

  52. Zalejska-Fiolka J, Hubková B, Birková A, Veliká B, Puchalska B, Kasperczyk S, Błaszczyk U, Fiolka R, Bożek A, Maksym B, Mareková M, Birkner E. Prognostic value of the modified atherogenic index of plasma during body Mass reduction in Polish Obese/Overweight people. Int J Environ Res Public Health. 2018;16(1). https://doi.org/10.3390/ijerph16010068.

  53. Guo R, Li N, Yang R, Liao XY, Zhang Y, Zhu BF, Zhao Q, Chen L, Zhang YG, Lei Y. Effects of the modified DASH Diet on adults with elevated blood pressure or hypertension: a systematic review and meta-analysis. Front Nutr. 2021;8. https://doi.org/10.3389/fnut.2021.725020.

  54. Liese AD, Bortsov A, Günther AL, Dabelea D, Reynolds K, Standiford DA, Liu L, Williams DE, Mayer-Davis EJ, D’Agostino RB Jr, Bell R, Marcovina S. Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: the SEARCH for diabetes in Youth study. Circulation. 2011;123(13):1410–7. https://doi.org/10.1161/circulationaha.110.955922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gholami F, Martami F, Ghorbaninezhad P, Mirrafiei A, Ebaditabar M, Davarzani S, Babaei N, Djafarian K, Shab-Bidar S. Association of low-carbohydrate diet score and carbohydrate quality with visceral adiposity and lipid accumulation product. Br J Nutr. 2023;129(5):843–53. https://doi.org/10.1017/s000711452200143x.

    Article  CAS  PubMed  Google Scholar 

  56. Kane JP, Pullinger CR, Goldfine ID, Malloy MJ. Dyslipidemia and Diabetes Mellitus: role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol. 2021;61:21–7. https://doi.org/10.1016/j.coph.2021.08.013.

    Article  CAS  PubMed  Google Scholar 

  57. Bahiru E, Hsiao R, Phillipson D, Watson KE. Mechanisms and treatment of dyslipidemia in diabetes. Curr Cardiol Rep. 2021;23(4):26. https://doi.org/10.1007/s11886-021-01455-w.

    Article  PubMed  Google Scholar 

  58. Zeinalabedini M, Nasli-Esfahani E, Esmaillzadeh A, Azadbakht L. How is healthy eating index-2015 related to risk factors for cardiovascular disease in patients with type 2 diabetes. Front Nutr. 2023;10:1201010. https://doi.org/10.3389/fnut.2023.1201010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boghossian NS, Yeung EH, Mumford SL, Zhang C, Gaskins AJ, Wactawski-Wende J, Schisterman EF. Adherence to the Mediterranean diet and body fat distribution in reproductive aged women. Eur J Clin Nutr. 2013;67(3):289–94. https://doi.org/10.1038/ejcn.2013.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patel P, Abate N. Body fat distribution and insulin resistance. Nutrients. 2013;5(6):2019–27. https://doi.org/10.3390/nu5062019.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes Mellitus. Compr Physiol. 2018;9(1):1–58. https://doi.org/10.1002/cphy.c170040.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic foot ulcers: A review. JAMA. 2023;330(1):62–75. https://doi.org/10.1001/jama.2023.10578.

    Article  CAS  PubMed  Google Scholar 

  63. Blanchette V, Brousseau-Foley M. Multidisciplinary management of diabetic foot ulcer infection. Rev Med Interne. 2021;42(3):193–201. https://doi.org/10.1016/j.revmed.2020.09.004.

    Article  CAS  PubMed  Google Scholar 

  64. Stein J, Geisel J, Obeid R. Association between neuropathy and B-vitamins: a systematic review and meta-analysis. Eur J Neurol. 2021;28(6):2054–64. https://doi.org/10.1111/ene.14786.

    Article  PubMed  Google Scholar 

  65. Pratama S, Lauren BC, Wisnu W. The efficacy of vitamin B(12) supplementation for treating vitamin B(12) deficiency and peripheral neuropathy in metformin-treated type 2 diabetes mellitus patients: a systematic review. Diabetes Metab Syndr. 2022;16(10):102634. https://doi.org/10.1016/j.dsx.2022.102634.

    Article  CAS  PubMed  Google Scholar 

  66. Didangelos T, Karlafti E, Kotzakioulafi E, Margariti E, Giannoulaki P, Batanis G, Tesfaye S, Kantartzis K. Vitamin B12 supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, placebo-controlled trial. Nutrients. 2021;13(2):395. https://doi.org/10.3390/nu13020395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sajid N, Miyan Z, Zaidi SIH, Jaffri SSA, AbdeAli M. Protein requirement and its intake in subjects with diabetic foot ulcers at a tertiary care hospital. Pak J Med Sci. 2018;34(4):886–90. https://doi.org/10.12669/pjms.344.15399.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lauwers P, Dirinck E, Van Bouwel S, Verrijken A, Van Dessel K, Van Gils C, Sels M, Peiffer F, Van Schil P, De Block C, Hendriks J. Malnutrition and its relation with diabetic foot ulcer severity and outcome: a review. Acta Clin Belg. 2022;77(1):79–85. https://doi.org/10.1080/17843286.2020.1800315.

    Article  PubMed  Google Scholar 

  69. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, Deery HG, Embil JM, Joseph WS, Karchmer AW, Pinzur MS, Senneville E. Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12):e132-173. https://doi.org/10.1093/cid/cis346.

    Article  PubMed  Google Scholar 

  70. Moore ZE, Corcoran MA, Patton D. Nutritional interventions for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev. 2020;7(7):Cd011378. https://doi.org/10.1002/14651858.CD011378.pub2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Azadbakht.

Ethics declarations

The Human Ethics Committee of Tehran University of Medical Sciences approved the study protocol [IR.TUMS.EMRI.REC.1401.072]. All participants completed written consent forms confirming that they understood and agreed to participate.

Competing interests

The authors have no financial or non-financial interests directly or indirectly related to the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalzadeh, M., Nasli-Esfahani, E., Montazer, M. et al. Association between DASH and novel atherogenic risk factors, anthropometric indices and foot ulcer indicators in type 2 diabetic patients with foot ulcer: a cross-sectional study. J Diabetes Metab Disord (2024). https://doi.org/10.1007/s40200-024-01427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-024-01427-1

Keywords

Navigation