Skip to main content

Advertisement

Log in

The prognostic significance of insulin resistance in COVID-19: a review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

Emerging publications indicate that diabetes predisposes patients with COVID-19 to more severe complications, which is partly attributed to inflammatory condition. In the current review, we reviewed recent published literature to provide evidence on the role of insulin resistance (IR) in diabetes, the association between diabetes and COVID-19 severity and mortality, the impact of COVID-19 infection on incident new-onset diabetes, mechanisms responsible for IR in COVID-19 patients, and the predictive value of different surrogates of IR in COVID-19.

Method

The literature search performs to find out studies that have assessed the association between IR surrogates and morbidity and mortality in patients with COVID-19.

Results

We showed that there is a bulk of evidence in support of the fact that diabetes is a potent risk factor for enhanced morbidity and mortality in COVID-19 patients. COVID-19 patients with diabetes are more prone to remarkable dysglycemia compared to those without diabetes, which is associated with an unfavourable prognosis. Furthermore, SARS-COV2 can make patients predispose to IR and diabetes via activating ISR, affecting RAAS signaling pathway, provoking inflammation, and changing the expression of PPARɣ and SREBP-1. Additionally, higher IR is associated with increased morbidity and mortality in COVID-19 patients and different surrogates of IR can be utilized as a prognostic biomarker for COVID-19 patients.

Conclusion

Different surrogates of IR can be utilized as predictors of COVID-19 complications and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdi A, Jalilian M, Sarbarzeh PA, Vlaisavljevic Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res Clin Pract. 2020;166:108347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci. 2020;21(10):3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Accili D. Can COVID-19 cause diabetes? Nat Metab. 2021;3(2):123–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Affinati AH, Wallia A, Gianchandani RY. Severe hyperglycemia and insulin resistance in patients with SARS-CoV-2 infection: a report of two cases. Clin Diabetes Endocrinol. 2021;7(1):1–5.

    Article  Google Scholar 

  5. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes, Metab Syndr Obes: Targets Ther. 2014;7:587–91. https://doi.org/10.2147/DMSO.S67400.

  6. Al-Hakeim HK, Al-Rubaye HT, Jubran AS, Almulla AF, Moustafa SR, Maes M. Increased insulin resistance due to Long COVID is associated with depressive symptoms and partly predicted by the inflammatory response during acute infection. Braz J Psychiatry. 2023;45(3):205–15. https://doi.org/10.47626/1516-4446-2022-3002.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Hakeim HK, Khairi Abed A, Rouf Moustafa S, Almulla AF, Maes M. Tryptophan catabolites, inflammation, and insulin resistance as determinants of chronic fatigue syndrome and affective symptoms in long COVID. Front Mol Neurosci. 2023;16:1194769. https://doi.org/10.3389/fnmol.2023.1194769.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alcántara-Alonso E, Molinar-Ramos F, González-López JA, Alcántara-Alonso V, Muñoz-Pérez MA, Lozano-Nuevo JJ, Benítez-Maldonado DR, Mendoza-Portillo E. High triglyceride to HDL-cholesterol ratio as a biochemical marker of severe outcomes in COVID-19 patients. Clin Nutr ESPEN. 2021;44:437–44. https://doi.org/10.1016/j.clnesp.2021.04.020.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alshammari S, AlMasoudi AS, AlBuhayri AH, AlAtwi HM, AlHwiti SS, Alaidi HM, Alshehri AM, Alanazi NA, Aljabri A, Al-Gayyar MM. Effect of COVID-19 on glycemic control, insulin resistance, and pH in elderly patients with type 2 diabetes. Cureus. 2023;15(2):e35390. https://doi.org/10.7759/cureus.35390.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alshawi A, Al-Shukry AF, Mohammed HA, Majeed TR, Abduljaleel AK, Mohammed MS. COVID-19 infection causes insulin-resistance between hospitalised patients in Najaf governorate. AIP Conf Proc. 2023;2776(1). https://doi.org/10.1063/5.0135959

  11. Amaro ALP, Ventura JCR, Garcia LRB, Garcia EIP, Calderon JGV, Flandes RNH. Importance of insulin resistance in the COVID-19 era: a retrospective analysis of a single center in Mexico [Article]. Cureus J Med Sci. 2022;14(9):29542. https://doi.org/10.7759/cureus.29542.

    Article  Google Scholar 

  12. Ashraf F, Mehmood M, Aurang Zeb M, Rehman Ju, Siddiqui FM. Evaluation of triglyceride-glucose index as a marker for severity in new onset diabetes in patients of COVID-19 pneumonia-a single center study. Access Microbiol. 2023;000548:v000543.

    Google Scholar 

  13. Atkinson MA, Powers AC. Distinguishing the real from the hyperglycaemia: does COVID-19 induce diabetes? Lancet Diabetes Endocrinol. 2021;9(6):328–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;2(7):572–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, Knighton P, Holman N, Khunti K, Sattar N. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellia A, Andreadi A, Giudice L, De Taddeo S, Maiorino A, D’Ippolito I, Giorgino FM, Ruotolo V, Romano M, Magrini A. Atherogenic dyslipidemia on admission is associated with poorer outcome in people with and without diabetes hospitalized for COVID-19. Diabetes Care. 2021;44(9):2149–57.

    Article  CAS  PubMed  Google Scholar 

  17. Bellia C, Andreadi A, D’Ippolito I, Scola L, Barraco S, Meloni M, Lauro D, Bellia A. Prevalence and risk of new-onset diabetes mellitus after COVID-19: a systematic review and meta-analysis. Front Endocrinol. 2023;14.

  18. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beydoun HA, Ng TK, Beydoun MA, Shadyab AH, Jung SY, Costanian C, Saquib N, Ikramuddin FS, Pan K, Zonderman AB. Biomarkers of glucose homeostasis as mediators of the relationship of body mass index and waist circumference with COVID-19 outcomes among postmenopausal women: The Women’s Health Initiative. Clin Nutr. 2023;42(9):1690–700.

    Article  CAS  PubMed  Google Scholar 

  20. Beydoun HA, Ng TKS, Beydoun MA, Shadyab AH, Jung SY, Costanian C, Saquib N, Ikramuddin FS, Pan K, Zonderman AB, Manson JE. Biomarkers of glucose homeostasis as mediators of the relationship of body mass index and waist circumference with COVID-19 outcomes among postmenopausal women: the women’s health initiative. Clin Nutr. 2023;42(9):1690–700. https://doi.org/10.1016/j.clnu.2023.07.004.

    Article  CAS  PubMed  Google Scholar 

  21. Biter Hİ, Kalyoncuoğlu M, Tosu AR, Çakal S, Apaydın Z, Gümüşdağ A, Çınar T, Eyüpkoca F, Belen E, Can MM. Prognostic value of the TyG index for in-hospital mortality in nondiabetic COVID-19 patients with myocardial injury. Rev Assoc Med Bras. 2022;68:1297–302.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2017;1863(5):1026–36.

    Article  CAS  Google Scholar 

  23. Borrayo G, Basurto L, González-Escudero E, Diaz A, Vázquez A, Sánchez L, Hernández- González GO, Barrera S, Degollado JA, Córdova N, Avelar F. TG/HDL-C ratio as cardio-metabolic biomarker even in normal weight women. Acta Endocrinol (Buchar). 2018;14(2):261–7. https://doi.org/10.4183/aeb.2018.261.

    Article  CAS  PubMed  Google Scholar 

  24. Burke SD, Zsengellér ZK, Khankin EV, Lo AS, Rajakumar A, DuPont JJ, McCurley A, Moss ME, Zhang D, Clark CD. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia. J Clin Investig. 2016;126(7):2561–74.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Calcaterra V, Biganzoli G, Dilillo D, Mannarino S, Fiori L, Pelizzo G, Zoia E, Fabiano V, Carlucci P, Camporesi A, Corti C, Mercurio G, Izzo F, Biganzoli E, Zuccotti G. Non-thyroidal illness syndrome and SARS-CoV-2-associated multisystem inflammatory syndrome in children [Article]. J Endocrinol Invest. 2022;45(1):199–208. https://doi.org/10.1007/s40618-021-01647-9.

    Article  CAS  PubMed  Google Scholar 

  26. Cao X, Yang F, Shi T, Yuan M, Xin Z, Xie R, Li S, Li H, Yang J. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis. Sci Rep. 2016;6:21592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ceriello A, De Nigris V, Prattichizzo F. Why is hyperglycaemia worsening COVID-19 and its prognosis? Diabetes, Obes Metab. 2020;22(10):1951.

    Article  CAS  PubMed  Google Scholar 

  28. Chang Y, Jeon J, Song TJ, Kim J. Association of triglyceride-glucose index with prognosis of COVID-19: A population-based study. J Infect Public Health. 2022;15(8):837–44. https://doi.org/10.1016/j.jiph.2022.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang Y, Jeon J, Song TJ, Kim J. Association of triglyceride/high-density lipoprotein cholesterol ratio with severe complications of COVID-19. Heliyon. 2023;9(6):e17428. https://doi.org/10.1016/j.heliyon.2023.e17428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen M, Zhu B, Chen D, Hu X, Xu X, Shen W-J, Hu C, Li J, Qu S. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: a 6-month prospective study. Endocr Pract. 2021;27(8):834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen MC, Zhu B, Chen D, Hu XZ, Xu XQ, Shen WJ, Hu CC, Li J, Qu S. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: a 6-month prospective study [Article]. Endocr Pract. 2021;27(8):834–41. https://doi.org/10.1016/j.eprac.2021.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chidambaram V, Tun NL, Haque WZ, Majella MG, Sivakumar RK, Kumar A, Hsu AT-W, Ishak IA, Nur AA, Ayeh SK. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS One. 2020;15(11):e0241541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen P. The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol. 2006;7(11):867–73.

    Article  CAS  PubMed  Google Scholar 

  34. Corona G, Pizzocaro A, Vena W, Rastrelli G, Semeraro F, Isidori AM, Pivonello R, Salonia A, Sforza A, Maggi M. Diabetes is most important cause for mortality in COVID-19 hospitalized patients: Systematic review and meta-analysis. Rev Endocr Metab Disord. 2021;22:275–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cromer SJ, Colling C, Schatoff D, Leary M, Stamou MI, Selen DJ, Putman MS, Wexler DJ. Newly diagnosed diabetes vs. pre-existing diabetes upon admission for COVID-19: Associated factors, short-term outcomes, and long-term glycemic phenotypes. J Diabetes Complicat. 2022;36(4):108145.

    Article  Google Scholar 

  36. da Silva A, Caldas APS, Rocha DMUP, Bressan J. Triglyceride-glucose index predicts independently type 2 diabetes mellitus risk: A systematic review and meta-analysis of cohort studies. Prim Care Diabetes. 2020;14(6):584–93.

    Article  PubMed  Google Scholar 

  37. DeBose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 2018;43(5):358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desterke C, Turhan AG, Bennaceur-Griscelli A, Griscelli F. PPARγ cistrome repression during activation of lung monocyte-macrophages in severe COVID-19. Iscience. 2020;23(10):101611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P. SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart. Heart Lung Circ. 2020;29(7):973–87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci. 2013;70:3493–511.

    Article  CAS  PubMed  Google Scholar 

  41. Dupont V, Kanagaratnam L, Goury A, Poitevin G, Bard M, Julien G, Bonnivard M, Champenois V, Noel V, Mourvillier B. Excess soluble fms-like tyrosine kinase 1 correlates with endothelial dysfunction and organ failure in critically ill coronavirus disease 2019 patients. Clin Infect Dis. 2021;72(10):1834–7.

    Article  CAS  PubMed  Google Scholar 

  42. Elshafei A, Khidr EG, El-Husseiny AA, Gomaa MH. RAAS, ACE2 and COVID-19; a mechanistic review. Saudi J Biol Sci. 2021;28(11):6465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fabre B, Machulsky NF, Olano C, Jacobsen D, Gomez ME, Perazzi B, Zago V, Zopatti D, Ferrero A, Schreier L, Berg G. Remnant cholesterol levels are associated with severity and death in COVID-19 patients. Sci Rep. 2022;12(1):17584. https://doi.org/10.1038/s41598-022-21177-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fahed M, Abou Jaoudeh MG, Merhi S, Mosleh JMB, Ghadieh R, Al Hayek S, El Hayek Fares JE. Evaluation of risk factors for insulin resistance: a cross sectional study among employees at a private university in Lebanon. BMC Endocr Disord. 2020;20:1–14.

    Article  Google Scholar 

  45. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Finucane FM, Davenport C. Coronavirus and obesity: could insulin resistance mediate the severity of Covid-19 infection? Front Public Health. 2020;8:184.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gangadharan C, Ahluwalia R, Sigamani A. Diabetes and COVID-19: Role of insulin resistance as a risk factor for COVID-19 severity. World J Diabetes. 2021;12(9):1550.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Carretero R, Vazquez-Gomez O, Lopez-Lomba M, Gil-Prieto R, Gil-de-Miguel A. Insulin resistance and metabolic syndrome as risk factors for hospitalization in patients with COVID-19: pilot study on the use of machine learning. Metab Syndr Relat Disord. 2023. https://doi.org/10.1089/met.2023.0083.

    Article  PubMed  Google Scholar 

  49. Gojda J, Koudelková K, Ouřadová A, Lang A, Krbcová M, Gvozdeva A, Šebo V, Slagmolen L, Potočková J, Tůma P, Rossmeislová L, Anděl M, Karpe F, Schlesinger S. Severe COVID-19 associated hyperglycemia is caused by beta cell dysfunction: a prospective cohort study. Nutr Diabetes. 2023;13(1):11. https://doi.org/10.1038/s41387-023-00241-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Govender N, Khaliq OP, Moodley J, Naicker T. Insulin resistance in COVID-19 and diabetes. Prim Care Diabetes. 2021;15(4):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goyal A, Gupta Y, Kalaivani M, Bhatla N, Tandon N. Impact of SARS-CoV-2 on progression of glycemic and cardiometabolic variables and changes in insulin indices: a longitudinal study. Diabetes Ther. 2021;12(11):3011–23. https://doi.org/10.1007/s13300-021-01158-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutr J. 2014;13:1–10.

    Article  Google Scholar 

  53. Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab. 2015;19(1):160–4. https://doi.org/10.4103/2230-8210.146874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartmann-Boyce J, Rees K, Perring JC, Kerneis SA, Morris EM, Goyder C, Otunla AA, James OE, Syam NR, Seidu S. Risks of and from SARS-CoV-2 infection and COVID-19 in people with diabetes: a systematic review of reviews. Diabetes Care. 2021;44(12):2790–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He X, Liu C, Peng J, Li Z, Li F, Wang J, Hu A, Peng M, Huang K, Fan D. COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduct Target Ther. 2021;6(1):427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hirata AE, Alvarez-Rojas F, Carvalheira JBC, de Oliveira Carvalho CR, Dolnikoff MS, Saad MJA. Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci. 2003;73(11):1369–81.

    Article  CAS  PubMed  Google Scholar 

  57. Hou Y, Moreau F, Chadee K. PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat Commun. 2012;3(1):1300.

    Article  PubMed  Google Scholar 

  58. Ide T, Shimano H, Yahagi N, Matsuzaka T, Nakakuki M, Yamamoto T, Nakagawa Y, Takahashi A, Suzuki H, Sone H. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol. 2004;6(4):351–7.

    Article  CAS  PubMed  Google Scholar 

  59. Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertens Res. 2020;43(7):648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10. https://doi.org/10.1210/jcem.85.7.6661.

    Article  CAS  PubMed  Google Scholar 

  61. Khatami F, Saatchi M, Zadeh SST, Aghamir ZS, Shabestari AN, Reis LO, Aghamir SMK. A meta-analysis of accuracy and sensitivity of chest CT and RT-PCR in COVID-19 diagnosis. Sci Rep. 2020;10(1):22402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care. 2021;44(12):2645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klip A, McGraw TE, James DE. Thirty sweet years of GLUT4. J Biol Chem. 2019;294(30):11369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Konigshoff M, Wilhelm A, Jahn A, Sedding D, Amarie OV, Eul B, Seeger W, Fink L, Gunther A, Eickelberg O. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis. Am J Respir Cell Mol Biol. 2007;37(6):640–50.

    Article  PubMed  Google Scholar 

  65. Lauterbach MA, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflügers Archiv-Eur J Physiol. 2017;469:385–96.

    Article  CAS  Google Scholar 

  66. Lee W, Ahn JH, Park HH, Kim HN, Kim H, Yoo Y, Shin H, Hong KS, Jang JG, Park CG. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Target Ther. 2020;5(1):186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leiria LO, Arantes-Costa FM, Calixto MC, Alexandre EC, Moura RF, Folli F, Prado CM, Prado MA, Prado VF, Velloso LA. Increased airway reactivity and hyperinsulinemia in obese mice are linked by ERK signaling in brain stem cholinergic neurons. Cell Rep. 2015;11(6):934–43.

    Article  CAS  PubMed  Google Scholar 

  68. Lemieux I, Lamarche B, Couillard C, Pascot A, Cantin B, Bergeron J, Dagenais GR, Després JP. Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med. 2001;161(22):2685–92. https://doi.org/10.1001/archinte.161.22.2685.

    Article  CAS  PubMed  Google Scholar 

  69. Li G, Chen Z, Lv Z, Li H, Chang D, Lu J. Diabetes mellitus and COVID-19: associations and possible mechanisms. Int J Endocrinol. 2021;2021:1.

    Article  Google Scholar 

  70. Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci. 2010;107(8):3441-3446.

  71. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liontos A, Biros D, Kavakli A, Matzaras R, Tsiakas I, Athanasiou L, Samanidou V, Konstantopoulou R, Vagias I, Panteli A. Glycemic dysregulation, inflammation and disease outcomes in patients hospitalized with COVID-19: beyond diabetes and obesity. Viruses. 2023;15(7):1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liontos A, Biros D, Kavakli A, Matzaras R, Tsiakas I, Athanasiou L, Samanidou V, Konstantopoulou R, Vagias I, Panteli A, Pappa C, Kolios NG, Nasiou M, Pargana E, Milionis H, Christaki E. Glycemic dysregulation, inflammation and disease outcomes in patients hospitalized with COVID-19: beyond diabetes and obesity. Viruses. 2023;15(7). https://doi.org/10.3390/v15071468

  74. Liu H, Liu J, Liu J, Xin S, Lyu Z, Fu X. Triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, a simple but effective indicator in predicting type 2 diabetes mellitus in older adults. Front Endocrinol (Lausanne). 2022;13:828581. https://doi.org/10.3389/fendo.2022.828581.

    Article  PubMed  Google Scholar 

  75. Liu X, Tan Z, Huang Y, Zhao H, Liu M, Yu P, Ma J, Zhao Y, Zhu W, Wang J. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):1–17.

    Article  CAS  Google Scholar 

  76. Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004;167(1):27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep. 2022;49(5):4013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mehraeen E, Dadras O, Afsahi AM, Karimi A, Pour MM, Mirzapour P, Barzegary A, Behnezhad F, Habibi P, Salehi MA. Vaccines for COVID-19: a systematic review of feasibility and effectiveness. Infect Disord-Drug Targets (Formerly Curr Drug Targets-Infect Disord). 2022;22(2):65–78.

    Google Scholar 

  79. Minh HV, Tien HA, Sinh CT, Thang DC, Chen CH, Tay JC, Siddique S, Wang TD, Sogunuru GP, Chia YC. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J Clin Hypertens. 2021;23(3):529–37.

    Article  CAS  Google Scholar 

  80. Minh HV, Tien HA, Sinh CT, Thang DC, Chen CH, Tay JC, Siddique S, Wang TD, Sogunuru GP, Chia YC, Kario K. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J Clin Hypertens (Greenwich). 2021;23(3):529–37. https://doi.org/10.1111/jch.14155.

    Article  CAS  PubMed  Google Scholar 

  81. Montefusco L, Ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, Daniele G, Abdelsalam A, Maestroni A, Dell’Acqua M, Ippolito E, Assi E, Usuelli V, Seelam AJ, Fiorina RM, Chebat E, Morpurgo P, Lunati ME, Bolla AM, Finzi G, Abdi R, Bonventre JV, Rusconi S, Riva A, Corradi D, Santus P, Nebuloni M, Folli F, Zuccotti GV, Galli M, Fiorina P. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3(6):774–85. https://doi.org/10.1038/s42255-021-00407-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Montefusco L, Ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, Daniele G, Abdelsalam A, Maestroni A, Dell’Acqua M. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab. 2021;3(6):774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract. 2020;162.

  84. Park G-M, Cho Y-R, Won K-B, Yang YJ, Park S, Ann SH, Kim Y-G, Park EJ, Kim S-J, Lee S-G. Triglyceride glucose index is a useful marker for predicting subclinical coronary artery disease in the absence of traditional risk factors. Lipids Health Dis. 2020;19:1–7.

    Article  Google Scholar 

  85. Peric S, Stulnig TM. Diabetes and COVID-19: disease—management—people. Wien Klin Wochenschr. 2020;132:356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Phillips MI, Kagiyama S. Angiotensin II as a pro-inflammatory mediator. Curr Opin Investig Drugs (London, England: 2000). 2002;3(4):569–77.

    CAS  Google Scholar 

  87. Rahimzadeh H, Tamehri Zadeh SS, Khajavi A, Saatchi M, Reis LO, Guitynavard F, Dehghani S, Soleimani V, Aghamir SMK. The tsunami of COVID-19 infection among kidney transplant recipients: a single-center study from Iran. J Epidemiol Global Health. 2021;11(4):389–96.

    Article  Google Scholar 

  88. Rahmati M, Keshvari M, Mirnasuri S, Yon DK, Lee SW, Il Shin J, Smith L. The global impact of COVID-19 pandemic on the incidence of pediatric new-onset type 1 diabetes and ketoacidosis: a systematic review and meta-analysis. J Med Virol. 2022;94(11):5112–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rajpal A, Rahimi L, Ismail-Beigi F. Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes. J Diabetes. 2020;12(12):895–908.

    Article  CAS  PubMed  Google Scholar 

  90. Ramezankhani A, Habibi-Moeini AS, Zadeh SST, Azizi F, Hadaegh F. Effect of family history of diabetes and obesity status on lifetime risk of type 2 diabetes in the Iranian population. J Global Health. 2022;12.

  91. Reiterer M, Rajan M, Gómez-Banoy N, Lau JD, Gomez-Escobar LG, Gilani A, Alvarez-Mulett S, Sholle ET, Chandar V, Bram Y, Hoffman K, Rubio-Navarro A, Uhl S, Shukla AP, Goyal P, tenOever BR, Alonso LC, Schwartz RE, Schenck EJ, Safford MM, Lo JC. Hyperglycemia in acute COVID-19 is characterized by adipose tissue dysfunction and insulin resistance. medRxiv. 2021. https://doi.org/10.1101/2021.03.21.21254072.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Reiterer M, Rajan M, Gómez-Banoy N, Lau JD, Gomez-Escobar LG, Ma L, Gilani A, Alvarez- Mulett S, Sholle ET, Chandar V. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab. 2021;33(11):2174–88 (e2175).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ren H, Yang Y, Wang F, Yan Y, Shi X, Dong K, Yu X, Zhang S. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. Cardiovasc Diabetol. 2020;19(1):1–8.

    Article  Google Scholar 

  94. Ren HH, Yang Y, Wang F, Yan YL, Shi XL, Dong K, Yu XF, Zhang SJ. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19 [Article]. Cardiovasc Diabetol. 2020;19(1):58. https://doi.org/10.1186/s12933-020-01035-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Investig. 1996;97(12):2859–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodriguez-Calvo T, Sabouri S, Anquetil F, von Herrath MG. The viral paradigm in type 1 diabetes: Who are the main suspects? Autoimmun Rev. 2016;15(10):964–9.

    Article  CAS  PubMed  Google Scholar 

  98. Rohani-Rasaf M, Mirjalili K, Vatannejad A, Teimouri M. Are lipid ratios and triglyceride- glucose index associated with critical care outcomes in COVID-19 patients? PLoS One. 2022;17(8):e0272000. https://doi.org/10.1371/journal.pone.0272000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, Santisteban P, González-Matías LC, Vigo E, Mallo F. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology. 2015;156(10):3559–69.

    Article  PubMed  Google Scholar 

  100. Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, Mingrone G, Boehm B, Cooper ME, Chai Z. New-onset diabetes in Covid-19. N Engl J Med. 2020;383(8):789–90.

    Article  PubMed  Google Scholar 

  101. Saiepour D, Sehlin J, Oldenborg P-A. Hyperglycemia-induced protein kinase C activation inhibits phagocytosis of c3b-and immunoglobulin g–opsonized yeast particles in normal human neutrophils. J Diabetes Res. 2003;4:125–32.

    Google Scholar 

  102. Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr. 2021;13:1–14.

    Article  CAS  Google Scholar 

  103. Scheen A. Pathophysiology of type 2 diabetes. Acta Clin Belg. 2003;58(6):335–41.

    Article  CAS  PubMed  Google Scholar 

  104. Seggelke SA, Ingram CC, Crawley S, Low Wang CC. Insulin resistance in a hospitalized COVID-19 patient: a case review. Clin Diabetes. 2021;39(2):228–32.

    Article  PubMed  PubMed Central  Google Scholar 

  105. SeyedAlinaghi S, Karimi A, Barzegary A, Pashaei Z, Afsahi AM, Alilou S, Janfaza N, Shojaei A, Afroughi F, Mohammadi P. Mucormycosis infection in patients with COVID‐19: A systematic review. Health Sci Rep 2022;5(2).

  106. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA. Insulin resistance causes inflammation in adipose tissue. J Clin Investig. 2018;128(4):1538–50.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shinoda H, Taguchi Y, Nakagawa R, Makino A, Okazaki S, Nakano M, Muramoto Y, Takahashi C, Takahashi I, Ando J. Amplification-free RNA detection with CRISPR–Cas13. Commun Biol. 2021;4(1):476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shulman R, Cohen E, Stukel TA, Diong C, Guttmann A. Examination of trends in diabetes incidence among children during the COVID-19 pandemic in Ontario, Canada, from March 2020 to September 2021. JAMA Netw Open. 2022;5(7):e2223394–e2223394.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304.

    Article  PubMed  Google Scholar 

  110. Sjaarda LG, Bacha F, Lee S, Tfayli H, Andreatta E, Arslanian S. Oral disposition index in obese youth from normal to prediabetes to diabetes: relationship to clamp disposition index. J Pediatr. 2012;161(1):51–7. https://doi.org/10.1016/j.jpeds.2011.12.050.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Somasundaram NP, Ranathunga I, Ratnasamy V, Wijewickrama PSA, Dissanayake HA, Yogendranathan N, Gamage KKK, de Silva NL, Sumanatilleke M, Katulanda P. The impact of SARS-Cov-2 virus infection on the endocrine system. J Endocr Soc. 2020;4(8):bvaa082.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Soto ME, Guarner-Lans V, Díaz-Díaz E, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Aisa-Álvarez A, Saucedo-Orozco H, Pérez-Torres I. Hyperglycemia and loss of redox homeostasis in COVID-19 patients. Cells. 2022;11(6):932. https://doi.org/10.3390/cells11060932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stager LM, Morgan CH, Watson CS, Morriss S, Gower BA, Fobian AD. The effects of COVID-19 virtual learning on body fat and insulin resistance in adolescents with overweight or obesity. Children. 2023;10(8):1398. https://www.mdpi.com/2227-9067/10/8/1398.

  114. Subir R. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): Boon or bane? Diabetes Metab Syndr: Clin Res Rev. 2020;14(5):829–31.

    Article  Google Scholar 

  115. Suganuma Y, Takahashi H, Sano H, Hayashi Y, Nishimura R. Changes in insulin resistance, body mass index and degree of obesity among junior high school students: A comparison before and after the outbreak of the COVID-19 pandemic. Pediatr Obes. 2023;18(10):e13065. https://doi.org/10.1111/ijpo.13065.

    Article  PubMed  Google Scholar 

  116. Szczerbiński Ł, Okruszko MA, Szabłowski M, Sołomacha S, Sowa P, Kiszkiel Ł, Gościk J, Krętowski AJ, Moniuszko-Malinowska A, Kamiński K. Long-term effects of COVID-19 on the endocrine system – a pilot case-control study [Original Research]. Front Endocrinol. 2023;14. https://doi.org/10.3389/fendo.2023.1192174.

  117. Takeda M, Yamamoto K, Takemura Y, Takeshita H, Hongyo K, Kawai T, Hanasaki-Yamamoto H, Oguro R, Takami Y, Tatara Y. Loss of ACE2 exaggerates high-calorie diet–induced insulin resistance by reduction of GLUT4 in mice. Diabetes. 2013;62(1):223–33.

    Article  CAS  PubMed  Google Scholar 

  118. Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care. 2012;35(7):1605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tan WSD, Liao W, Zhou S, Mei D, Wong W-SF. Targeting the renin–angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol. 2018;40:9–17.

    Article  CAS  PubMed  Google Scholar 

  120. Triplitt C, Solis-Herrera C, Cersosimo E, Abdul-Ghani M, Defronzo RA. Empagliflozin and linagliptin combination therapy for treatment of patients with type 2 diabetes mellitus. Expert Opin Pharmacother. 2015;16(18):2819–33.

    Article  CAS  PubMed  Google Scholar 

  121. Tudoran C, Bende R, Bende F, Giurgi-Oncu C, Enache A, Dumache R, Tudoran M. Connections between diabetes mellitus and metabolic syndrome and the outcome of cardiac dysfunctions diagnosed during the recovery from COVID-19 in patients without a previous history of cardiovascular diseases. Biology. 2023;12(3):370. https://doi.org/10.3390/biology12030370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Valencia I, Peiro C, Lorenzo O, Sanchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol. 2020;11:1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vikram A, Tripathi DN, Kumar A, Singh S. Oxidative stress and inflammation in diabetic complications, vol. 2014. Hindawi; 2014.

    Google Scholar 

  124. Wang Y, Yang W, Jiang X. Association between triglyceride-glucose index and hypertension: a meta-analysis. Front Cardiovasc Med. 2021;8:644035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Warpechowski J, Leszczyńska P, Juchnicka D, Olichwier A, Szczerbiński Ł, Krętowski AJ. Assessment of the Immune response in patients with insulin resistance, obesity, and diabetes to COVID-19 vaccination. Vaccines. 2023;11(7):1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wek R, Jiang H-Y, Anthony T. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  127. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu Y. Compensation of ACE2 function for possible clinical management of 2019-nCoV- induced acute lung injury. Virol Sin. 2020;35(3):256–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu Y, Zhang Z, Li Y, Li Y. The regulation of integrated stress response signaling pathway on viral infection and viral antagonism. Front Microbiol. 2022;12:814635.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu Z, Xie Y, Morrison RF, Bucher N, Farmer SR. PPARgamma induces the insulin- dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Investig. 1998;101(1):22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, Coffman TM, Chen S, Batlle D. ACE and ACE2 activity in diabetic mice. Diabetes. 2006;55(7):2132–9.

    Article  CAS  PubMed  Google Scholar 

  132. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2022;10(5):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang J-K, Lin S-S, Ji X-J, Guo L-M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47:193–9.

    Article  CAS  PubMed  Google Scholar 

  134. Yazdanpanah MH, Mardani M, Osati S, Ehrampoush E, Davoodi SH, Homayounfar R. COVID-19 induces body composition and metabolic alterations. Cureus. 2023;15(1):e34196. https://doi.org/10.7759/cureus.34196.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yuan S, Chu H, Chan JF-W, Ye Z-W, Wen L, Yan B, Lai P-M, Tee K-M, Huang J, Chen D. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat Commun. 2019;10(1):120.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zanotto TM, Quaresma PG, Guadagnini D, Weissmann L, Santos AC, Vecina JF, Calisto K, Santos A, Prada PO, Saad MJ. Blocking iNOS and endoplasmic reticulum stress synergistically improves insulin resistance in mice. Mol Metab. 2017;6(2):206–18.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang BP, Dong C, Li SZ, Song XQ, Wei W, Liu L. Triglyceride to High-density lipoprotein cholesterol ratio is an important determinant of cardiovascular risk and poor prognosis in coronavirus disease-19: a retrospective case series study [Article]. Diabetes Metab Syndr Obes-Targets Therapy. 2020;13:3925–36. https://doi.org/10.2147/dmso.S268992.

    Article  CAS  Google Scholar 

  138. Zhao S, Yu S, Chi C, Fan X, Tang J, Ji H, Teliewubai J, Zhang Y, Xu Y. Association between macro-and microvascular damage and the triglyceride glucose index in community- dwelling elderly individuals: the Northern Shanghai Study. Cardiovasc Diabetol. 2019;18(1):1–8.

    Article  Google Scholar 

  139. Zheng YF, Wang J, Ding XH, Chen SY, Li J, Shen B. The correlation between triglyceride-glucose index and SARS-CoV-2 RNA re-positive in discharged COVID-19 patients [Article]. Infect Drug Resist. 2022;15:14. https://doi.org/10.2147/idr.S368568.

    Article  Google Scholar 

  140. Zhou CC, Ahmad S, Mi T, Xia L, Abbasi S, Hewett PW, Sun C, Ahmed A, Kellems RE, Xia Y. Angiotensin II induces soluble fms-Like tyrosine kinase-1 release via calcineurin signaling pathway in pregnancy. Circ Res. 2007;100(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  141. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SSTZ; data curation: SSTZ, EM, FA, AZ; writing—original draft preparation: SSTZ, FA; review and editing: MB, EM, SASA; preparing figures: AZ.

Corresponding author

Correspondence to Seyed Saeed Tamehri Zadeh.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehraeen, E., Abbaspour, F., Banach, M. et al. The prognostic significance of insulin resistance in COVID-19: a review. J Diabetes Metab Disord (2024). https://doi.org/10.1007/s40200-024-01385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-024-01385-8

Keywords

Navigation