Skip to main content

Advertisement

Log in

Exploring the metabolomics profile of frailty- a systematic review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Frailty is a multifaceted geriatric syndrome characterized by an increased vulnerability to stressful events. metabolomics studies are valuable tool for better understanding the underlying mechanisms of pathologic conditions. This review aimed to elucidate the metabolomics profile of frailty.

Method

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement. A comprehensive search was conducted across multiple databases. Initially, 5027 results were retrieved, and after removing duplicates, 1838 unique studies were subjected to screening. Subsequently, 248 studies underwent full-text screening, with 21 studies ultimately included in the analysis. Data extraction was performed meticulously by two authors, and the quality of the selected studies was assessed using the Critical Appraisal Skills Program (CASP) checklist.

Results

The findings revealed that certain Branched-chain amino acids (BCAAs) levels were lower in frail subjects compared to robust subjects, while levels of glutamate and glutamine were higher in frail individuals. Moreover, sphingomyelins and phosphatidylcholines (PC) displayed a decreasing trend as frailty advanced. Additionally, other metabolic derivatives, such as carnitine, exhibited significant associations with frailty. These metabolites were primarily interconnected through biochemical pathways related to the tricarboxylic acid and urea cycles. Notably, frailty was associated with a decrease in metabolic derivatives, including carnitine.

Conclusion

This study underscores the intricate relationship between essential metabolites, including amino acids and lipids, and their varying levels in frail individuals compared to their robust counterparts. It provides a comprehensive panel of metabolites, shedding light on their potential associations with frailty and expanding our understanding of this complex syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–86.

    PubMed  Google Scholar 

  2. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol Ser A Biol Sci Med Sci. 2001;56(3):M146-56.

    CAS  Google Scholar 

  3. Castell M-V, Sánchez M, Julián R, Queipo R, Martín S, Otero Á. Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care. BMC Fam Pract. 2013;14(1):1–9.

    Google Scholar 

  4. Ma L, Tang Z, Chan P, Walston JD. Novel frailty screening questionnaire (FSQ) predicts 8-year mortality in older adults in China. J Frailty Aging. 2019;8(1):33–8.

    CAS  PubMed  Google Scholar 

  5. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. Can Med Assoc J. 2005;173(5):489–95.

    Google Scholar 

  6. Pilotto A, Ferrucci L, Franceschi M, D’Ambrosio LP, Scarcelli C, Cascavilla L, et al. Development and validation of a multidimensional prognostic index for one-year mortality from comprehensive geriatric assessment in hospitalized older patients. Rejuvenation Res. 2008;11(1):151–61.

    PubMed  Google Scholar 

  7. Amininezhad F, Payab M, Sharifi F, Ostovar A, Mehrdad N, Heshmat R, et al. Bone characteristics and metabolic phenotypes of obesity in an Iranian Elderly population: Bushehr Elderly Health Program (BEHP). Arch Osteoporos. 2021;16(1):1–11.

    Google Scholar 

  8. Farkhani, S., Payab, M., Sharifi, F. et al. Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord. 2023. https://doi.org/10.1007/s40200-023-01325-y.

  9. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: a review. Eur J Intern Med. 2016;31:3–10.

    PubMed  Google Scholar 

  10. Faller JW, Pereira DDN, de Souza S, Nampo FK, Orlandi FS, Matumoto S. Instruments for the detection of frailty syndrome in older adults: A systematic review. PLoS One. 2019;14(4):e0216166.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;1(2):153–61.

    CAS  PubMed  Google Scholar 

  13. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing research reviews. 2018;47:214–77.

    CAS  PubMed  Google Scholar 

  14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.

    PubMed  Google Scholar 

  15. Pujos-Guillot E, Pétéra M, Jacquemin J, Centeno D, Lyan B, Montoliu I, et al. Identification of pre-frailty sub-phenotypes in elderly using metabolomics. Front Physiol. 2018;9:1903.

    PubMed  Google Scholar 

  16. Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun. 2014;453(2):220–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Livshits G, Malkin I, Bowyer RCE, Verdi S, Bell JT, Menni C, et al. Multi-OMICS analyses of frailty and chronic widespread musculoskeletal pain suggest involvement of shared neurological pathways. Pain. 2018;159(12):2565–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fazelzadeh P, Hangelbroek RW, Tieland M, de Groot LC, Verdijk LB, van Loon LJ, et al. The muscle metabolome differs between healthy and frail older adults. J Proteome Res. 2016;15(2):499–509.

    CAS  PubMed  Google Scholar 

  19. Hangelbroek RW, Fazelzadeh P, Tieland M, Boekschoten MV, Hooiveld GJ, van Duynhoven JP, et al. Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness. J Cachex, Sarcopenia Muscle. 2016;7(5):604–14.

    Google Scholar 

  20. Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol. 1997;273(4):E790-800.

    CAS  PubMed  Google Scholar 

  21. Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA. 1996;93(26):15364–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Neinast M, Murashige D, Arany Z. Branched chain amino acids. Ann Rev Physiol. 2019;81:139–64.

    CAS  Google Scholar 

  23. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136(1 Suppl):227s–31s.

    CAS  PubMed  Google Scholar 

  24. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351(6268):43–8.

    CAS  PubMed  Google Scholar 

  25. Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, et al. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol. 2016;216(1):15–41.

    CAS  Google Scholar 

  26. Young VR, Alexis SD, Baliga BS, Munro HN, Muecke W. Metabolism of administered 3-methylhistidine. Lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative. J Biol Chem. 1972;247(11):3592–600.

    CAS  PubMed  Google Scholar 

  27. Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, et al. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 2017;104:165–77.

    CAS  PubMed  Google Scholar 

  28. Hubbard RE, Lang IA, Llewellyn DJ, Rockwood K. Frailty, body mass index, and abdominal obesity in older people. J Gerontol Ser A Biol Sci Med Sci. 2010;65(4):377–81.

    Google Scholar 

  29. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachex Sarcopenia Muscle. 2015;6(4):278–86.

    Google Scholar 

  30. Ubaida-Mohien C, Lyashkov A, Gonzalez-Freire M, Tharakan R, Shardell M, Moaddel R, Semba RD, Chia CW, Gorospe M, Sen R, Ferrucci L. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. Elife. 2019;8:e49874. https://doi.org/10.7554/eLife.49874.PMC6810669.

  31. Rémond D, Shahar DR, Gille D, Pinto P, Kachal J, Peyron MA, et al. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget. 2015;6(16):13858–98.

    PubMed  PubMed Central  Google Scholar 

  32. Klipstein-Grobusch K, Reilly JJ, Potter J, Edwards CA, Roberts MA. Energy intake and expenditure in elderly patients admitted to hospital with acute illness. Br J Nutr. 1995;73(2):323–34.

    CAS  PubMed  Google Scholar 

  33. Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Coelho-Junior HJ, Bossola M, Urbani A, Landi F, Bernabei R, Marzetti E. A distinct pattern of circulating amino acids characterizes older persons with physical frailty and Sarcopenia: results from the BIOSPHERE study. Nutrients. 2018;10(11):1691. https://doi.org/10.3390/nu10111691.

  34. Westbrook R, Chung T, Lovett J, Ward C, Joca H, Yang H, Khadeer M, Tian J, Xue QL, Le A, Ferrucci L, Moaddel R, de Cabo R, Hoke A, Walston J, Abadir PM. Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight. 2020;5(16):e136091. https://doi.org/10.1172/jci.insight.136091.

  35. Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, et al. Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study. GeroScience. 2021;43:727–40.

    CAS  PubMed  Google Scholar 

  36. Marron MM, Harris TB, Boudreau RM, Clish CB, Moore SC, Murphy RA, Murthy VL, Sanders JL, Shah RV, Tseng GC, Wendell SG, Zmuda JM, Newman AB. Metabolites associated with vigor to frailty among community-dwelling older black men. Metabolites. 2019;9(5):83. https://doi.org/10.3390/metabo9050083.

  37. Adachi Y, Ono N, Imaizumi A, Muramatsu T, Andou T, Shimodaira Y, et al. Plasma amino acid profile in severely frail elderly patients in Japan. Int J Gerontol. 2018;12(4):290–3.

    Google Scholar 

  38. Calvani R, Rodriguez-Mañas L, Picca A, Marini F, Biancolillo A, Laosa O, Pedraza L, Gervasoni J, Primiano A, Conta G, Bourdel-Marchasson I, Regueme SC, Bernabei R, Marzetti E, Sinclair AJ, Gambassi G. Identification of a circulating amino acid signature in frail older persons with type 2 diabetes mellitus: results from the metabofrail study. Nutrients. 2020;12(1):199. https://doi.org/10.3390/nu12010199.

  39. Kumar R, Mohan N, Upadhyay AD, Singh AP, Sahu V, Dwivedi S, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Barzilay JI, Blaum C, Moore T, Xue QL, Hirsch CH, Walston JD, et al. Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health Study. Arch Intern Med. 2007;167(7):635–41.

    PubMed  Google Scholar 

  41. Marzetti E, Guerra F, Calvani R, Marini F, Biancolillo A, Gervasoni J, Primiano A, Coelho-Júnior HJ, Landi F, Bernabei R, Bucci C, Picca A. Circulating mitochondrial-derived vesicles, inflammatory biomarkers and amino acids in older adults with physical frailty and sarcopenia: a preliminary BIOSPHERE multi-marker study using sequential and orthogonalized covariance selection - linear discriminant analysis. Front Cell Dev Biol. 2020;8:564417. https://doi.org/10.3389/fcell.2020.564417.

  42. Lee W-J, Chen L-K, Liang C-K, Peng L-N, Chiou S-T, Chou P. Soluble ICAM-1, independent of IL-6, is associated with prevalent frailty in community-dwelling elderly Taiwanese people. PloS One. 2016;11(6):e0157877.

    PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Zhou Q, Yang R, Hu C, Huang Z, Zheng C, et al. Serum branched-chain amino acids are associated with leukocyte telomere length and frailty based on residents from Guangxi longevity county. Sci Rep. 2020;10(1):10252.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Goh SY, Cooper ME. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93(4):1143–52.

    CAS  PubMed  Google Scholar 

  45. Semba RD, Arab L, Sun K, Nicklett EJ, Ferrucci L. Fat mass is inversely associated with serum carboxymethyl-lysine, an advanced glycation end product, in adults. J Nutr. 2011;141(9):1726–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun K, Semba RD, Fried LP, Schaumberg DA, Ferrucci L, Varadhan R. Elevated serum carboxymethyl-lysine, an advanced glycation end product, predicts severe walking disability in older women: the women’s health and aging study I. J Aging Res. 2012;2012:586385.

    PubMed  PubMed Central  Google Scholar 

  47. Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010;108(1):191–5.

    CAS  PubMed  Google Scholar 

  48. Whitson HE, Arnold AM, Yee LM, Mukamal KJ, Kizer JR, Djousse L, et al. Serum carboxymethyl-lysine, disability, and frailty in older persons: the Cardiovascular Health Study. J Gerontol Ser A Biol Sci Med Sci. 2014;69(6):710–6.

    CAS  Google Scholar 

  49. Vance JE. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res. 2008;49(7):1377–87.

    CAS  PubMed  Google Scholar 

  50. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9):1558–72.

    PubMed  Google Scholar 

  51. Conte Camerino D, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M, et al. Taurine and skeletal muscle disorders. Neurochem Res. 2004;29(1):135–42.

    PubMed  Google Scholar 

  52. Scicchitano BM, Sica G. The beneficial effects of taurine to counteract sarcopenia. Curr Protein Pept Sci. 2018;19(7):673–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine–from organism to organelle. Acta Physiol. 2015;213(1):191–212.

    CAS  Google Scholar 

  54. Borum PR. Carnitine. Ann Rev Nutr. 1983;3:233–59.

    CAS  Google Scholar 

  55. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Sign. 2019;30(2):251–94.

    CAS  Google Scholar 

  57. Overmyer KA, Evans CR, Qi NR, Minogue CE, Carson JJ, Chermside-Scabbo CJ, et al. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab. 2015;21(3):468–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41(5):1195–205.

    CAS  PubMed  Google Scholar 

  60. Marcos-Pérez D, Sánchez-Flores M, Maseda A, Lorenzo-López L, Millán-Calenti JC, Strasser B, et al. Frailty status in older adults is related to alterations in indoleamine 2,3-dioxygenase 1 and guanosine triphosphate cyclohydrolase I enzymatic pathways. J Am Med Dir Assoc. 2017;18(12):1049–57.

    PubMed  Google Scholar 

  61. Hubbard RE, O’Mahony MS, Calver BL, Woodhouse KW. Plasma esterases and inflammation in ageing and frailty. Eur J Clin Pharmacol. 2008;64(9):895–900.

    CAS  PubMed  Google Scholar 

  62. Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36(4):316–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Ann Rev Med. 2009;60:355–66.

    CAS  PubMed  Google Scholar 

  64. Cynober LA. Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002;18(9):761–6.

    CAS  Google Scholar 

  65. Payab M, Tayanloo-Beik A, Falahzadeh K, Mousavi M, Salehi S, Djalalinia S, Ebrahimpur M, Rezaei N, Rezaei-Tavirani M, Larijani B, Arjmand B, Gilany K. Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J Diabetes Metab Disord. 2021;21(1):889–917. https://doi.org/10.1007/s40200-021-00917-w.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sharifi F, Khoiee MA, Aminroaya R, Ebrahimpur M, Shafiee G, Heshmat R, et al. Studying the relationship between cognitive impairment and frailty phenotype: a cross-sectional analysis of the Bushehr Elderly Health (BEH) program. J Diab Metab Disord. 2021;20(2):1229–37.

    CAS  Google Scholar 

  67. Lustgarten MS, Price LL, Chale A, Phillips EM, Fielding RA. Branched chain amino acids are associated with muscle mass in functionally limited older adults. J Gerontol Ser A Biol Sci Med Sci. 2014;69(6):717–24.

    CAS  Google Scholar 

  68. Murphy RA, Moore SC, Playdon M, Meirelles O, Newman AB, Milijkovic I, et al. Metabolites Associated With Lean Mass and Adiposity in Older Black Men. J Gerontol Ser A Biol Sci Med Sci. 2017;72(10):1352–9.

    CAS  Google Scholar 

  69. Johnson P, Perry SV. Biological activity and the 3-methylhistidine content of actin and myosin. Biochem J. 1970;119(2):293–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Trappe T, Williams R, Carrithers J, Raue U, Esmarck B, Kjaer M, et al. Influence of age and resistance exercise on human skeletal muscle proteolysis: a microdialysis approach. J Physiol. 2004;554(Pt 3):803–13.

    CAS  PubMed  Google Scholar 

  71. Sakuma K, Aoi W, Yamaguchi A. Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Archiv: Eur J Physiol. 2015;467(2):213–29.

    CAS  Google Scholar 

  72. Børsheim E, Bui QU, Tissier S, Kobayashi H, Ferrando AA, Wolfe RR. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin Nutr. 2008;27(2):189–95.

    PubMed  PubMed Central  Google Scholar 

  73. Ohtani M, Kawada S, Seki T, Okamoto Y. Amino acid and vitamin supplementation improved health conditions in elderly participants. J Clin Biochem Nutr. 2012;50(2):162–8.

    CAS  PubMed  Google Scholar 

  74. Kim M, Nevado-Holgado A, Whiley L, Snowden SG, Soininen H, Kloszewska I, et al. Association between plasma ceramides and phosphatidylcholines and hippocampal brain volume in late onset Alzheimer’s disease. J Alzheimers Dis. 2017;60(3):809–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou MM, Xue Y, Sun SH, Wen M, Li ZJ, Xu J, et al. Effects of different fatty acids composition of phosphatidylcholine on brain function of dementia mice induced by scopolamine. Lipids Health Dis. 2016;15(1):135.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This systematic review was carried out without the provision of external financial support or research grants.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MP, ME, BL

Supervision: MP, BL, ME

Search and Review: AS, YS, MV, AG, TY, FS

Manuscript Writing: ASH, AH, YS, ZA

Revision and Editing: AA, ASH, ZA

Figure: ASH, AA

All authors reviewed and approved the final version of the manuscript

Corresponding authors

Correspondence to Moloud Payab or Mahbube Ebrahimpur.

Ethics declarations

Ethics approval and consent to participate

The ethical committee of EMRI approved the present study (IR.TUMS.EMRI.REC.1399.060)

Consent for publication

Not applicable

Conflict of interest

The authors declare no conflict of interest.

AI declaration

This article has been entirely conceived, conceptualized, and developed by human authors. The central concepts, research, and main content of this study are the result of human effort and expertise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekarchian, A., Bandarian, F., Hadizadeh, A. et al. Exploring the metabolomics profile of frailty- a systematic review. J Diabetes Metab Disord 23, 289–303 (2024). https://doi.org/10.1007/s40200-023-01379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-023-01379-y

Keywords

Navigation