Skip to main content
Log in

KCNQ1 rs2237895 polymorphism is associated with the therapeutic response to sulfonylureas in Iranian type 2 diabetes mellitus patients

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background and Aims

Sulfonylureas are the most secondary prescribed oral anti-diabetic drug. Understanding its genetic role in pharmacodynamics can elucidate a considerable knowledge about personalized treatment in type 2 diabetes patients. This study aimed to assess the impact of KCNQ1 variants on sulfonylureas response among type 2 diabetes Iranian patients.

Methods and Results

100 patients were recruited who were under sulfonylureas therapy for six months. 50 responder and 50 non-responder patients were selected. KCNQ1 variants were determined by the RFLP method, and their role in treatment response was assessed retrospectively. Patients with rs2237895 CC and AC genotypes demonstrated a significant decrement in FBS and HbA1c after treatment over patients with AA genotypes (All P < 0.001). Compared to the A allele, the odds ratio for treatment success between carriers with rs2237895 C allele was 4.22-fold (P < 0.001). Patients with rs2237892 CT heterozygous genotype exhibit a higher reduction rate in HbA1c and FBS than CC homozygotes (P=0.064 and P=0.079, respectively). The rs2237892 T allele carriers showed an odds ratio equals to 2.83-fold over C allele carriers in the responder group compared to the non-responder group (p=0.081).

Conclusion

Findings suggest that the KCNQ1 rs2237895 polymorphism is associated with the sulfonylureas response on Iranian type 2 diabetes patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 diabetes mellitus

T2D :

Type 2 diabetes

SUR1 :

Sulfonylurea receptor 1

SUR2A :

Sulfonylurea receptor 2A

SUR2B :

Sulfonylurea receptor 2B

RFLP :

Restriction fragment length polymorphism

KCNQ1 :

Potassium Voltage-Gated Channel Subfamily Q Member 1

SU :

Sulfonylurea

BMI :

Body mass index

FBS :

Fast blood sugar

HbA1c :

Hemoglobin A1C

HDL :

High-density lipid

LDL :

Low-density lipid

TC :

Total cholesterol

TG :

Triglyceride

References

  1. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.

    Article  Google Scholar 

  2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.

    Article  Google Scholar 

  3. Esteghamati A, Larijani B, Aghajani MH, Ghaemi F, Kermanchi J, Shahrami A, et al. Diabetes in Iran: prospective analysis from first nationwide diabetes report of National Program for prevention and control of diabetes (NPPCD-2016). Sci Rep. 2017;7(1):1–10.

    Article  CAS  Google Scholar 

  4. Pearson E, Liddell W, Shepherd M, Corrall R, Hattersley A. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1α gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med. 2000;17(7):543–5.

    Article  CAS  Google Scholar 

  5. Landman GW, de Bock GH, Van Hateren KJ, Van Dijk PR, Groenier KH, Gans RO, et al. Safety and efficacy of gliclazide as treatment for type 2 diabetes: a systematic review and meta-analysis of randomized trials. PLoS One. 2014;9(2):e82880.

    Article  Google Scholar 

  6. Prescott L. Pathological and physiological factors affecting drug absorption, distribution, elimination, and response in man. Concepts in biochemical pharmacology: Springer. 1975:234–57.

  7. Gribble F, Ashcroft F. Differential sensitivity of beta-cell and extrapancreatic KATP channels to gliclazide. Diabetologia. 1999;42(7):845–8.

    Article  CAS  Google Scholar 

  8. Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51(suppl 3):S368–S76.

    Article  CAS  Google Scholar 

  9. Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med. 2006;57:119–37.

    Article  CAS  Google Scholar 

  10. Ventola CL. The role of pharmacogenomic biomarkers in predicting and improving drug response: part 2: challenges impeding clinical implementation. Pharmacy and therapeutics. 2013;38(10):624.

    PubMed  PubMed Central  Google Scholar 

  11. Loganadan N, Huri H, Vethakkan S, Hussein Z. Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation. The pharmacogenomics journal. 2016;16(3):209–19.

    Article  CAS  Google Scholar 

  12. Ordelheide A-M. Hrabě de Angelis M, Häring H-U, Staiger H. Pharmacogenetics of oral antidiabetic therapy. Pharmacogenomics. 2018;19(6):577–87.

    Article  CAS  Google Scholar 

  13. Szabo M, Máté B, Csép K, Benedek T. Genetic approaches to the study of gene variants and their impact on the pathophysiology of type 2 diabetes. Biochem Genet. 2018;56(1):22–55.

    Article  CAS  Google Scholar 

  14. Yazdi KV, Kalantar SM, Houshmand M, Rahmanian M, Manaviat MR, Jahani MR, et al. SLC30A8, CDKAL1, TCF7L2, KCNQ1 and IGF2BP2 are associated with type 2 diabetes mellitus in Iranian patients. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2020;13:897.

    Article  CAS  Google Scholar 

  15. Holmkvist J, Banasik K, Andersen G, Unoki H, Jensen TS, Pisinger C, et al. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load. PLoS One. 2009;4(6):e5872.

    Article  Google Scholar 

  16. Müssig K, Staiger H, Machicao F, Kirchhoff K, Guthoff M, Schäfer SA, et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes. 2009;58(7):1715–20.

    Article  Google Scholar 

  17. Yamagata K, Senokuchi T, Lu M, Takemoto M, Karim MF, Go C, et al. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem Biophys Res Commun. 2011;407(3):620–5.

    Article  CAS  Google Scholar 

  18. Tan JT, Nurbaya S, Gardner D, Ye S, Tai ES, Ng DP. Genetic variation in KCNQ1 associates with fasting glucose andβ-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes. 2009;58(6):1445–9.

    Article  CAS  Google Scholar 

  19. Jonsson A, Isomaa B, Tuomi T, Taneera J, Salehi A, Nilsson P, et al. A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes. 2009;58(10):2409–13.

    Article  CAS  Google Scholar 

  20. Hu C, Wang C, Zhang R, Ma X, Wang J, Lu J, et al. Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. Diabetologia. 2009;52(7):1322–5.

    Article  CAS  Google Scholar 

  21. Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther. 2001;90(1):1–19.

    Article  CAS  Google Scholar 

  22. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092.

    Article  CAS  Google Scholar 

  23. Duan F, Guo Y, Zhang L, Chen P, Wang X, Liu Z, et al. Association of KCNQ1 polymorphisms with gliclazide efficacy in Chinese type 2 diabetic patients. Pharmacogenet Genomics. 2016;26(4):178–83.

    Article  CAS  Google Scholar 

  24. Schroner Z, Dobrikova M, Klimcakova L, Javorsky M, Zidzik J, Kozarova M, et al. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2011;17(7):CR392.

    Article  CAS  Google Scholar 

  25. Yu W, Hu C, Zhang R, Wang C, Qin W, Lu J, et al. Effects of KCNQ1 polymorphisms on the therapeutic efficacy of oral antidiabetic drugs in Chinese patients with type 2 diabetes. Clinical Pharmacology & Therapeutics. 2011;89(3):437–42.

    Article  CAS  Google Scholar 

  26. Li Q. Tang T-t, Jiang F, Zhang R, Chen M, yin J, et al. polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes. Acta Pharmacol Sin. 2017;38(1):80–9.

    Article  Google Scholar 

  27. Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

    Article  CAS  Google Scholar 

  28. Drouin P, Standl E, Group DMS. Gliclazide modified release*: results of a 2-year study in patients with type 2 diabetes. Diabetes Obes Metab. 2004;6(6):414–21.

    Article  CAS  Google Scholar 

  29. Roumie CL, Greevy RA, Grijalva CG, Hung AM, Liu X, Griffin MR. Diabetes treatment intensification and associated changes in HbA1c and body mass index: a cohort study. BMC Endocr Disord. 2016;16(1):1–9.

    Article  Google Scholar 

  30. Schroner Z, Javorsky M, Tkacova R, Klimcakova L, Dobrikova M, Habalova V, et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(1):89–91.

    Article  CAS  Google Scholar 

  31. Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Investig. 2004;34(8):535–42.

    Article  CAS  Google Scholar 

  32. Thulé PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Current diabetes reports. 2014;14(4):473.

    Article  Google Scholar 

  33. Kurukulasuriya LR, Sowers JR. Therapies for type 2 diabetes: lowering HbA1c and associated cardiovascular risk factors. Cardiovasc Diabetol. 2010;9(1):1–13.

    Article  Google Scholar 

  34. MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, et al. Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol. 2001;15(8):1423–35.

    Article  CAS  Google Scholar 

  35. van Vliet-Ostaptchouk JV, van Haeften TW, Landman GW, Reiling E, Kleefstra N, Bilo HJ, et al. Common variants in the type 2 diabetes KCNQ1 gene are associated with impairments in insulin secretion during hyperglycaemic glucose clamp. PLoS One. 2012;7(3):e32148.

    Article  Google Scholar 

Download references

Acknowledgments

Hereby, we would like to thank the whole team of the Imam Khomeini hospital of Ahvaz and especially diabetes department nurses who have helped us greatly to conduct this study. Also, we want to declare our sincere gratitude to all participants who have aided us generously in this way.

Funding

This work was supported by Ahvaz Jundishapur University Medical Sciences (research project no: D-9712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alihossein Saberi.

Ethics declarations

Competing Interest

We have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakerian, S., Rashidi, H., Birgani, M.T. et al. KCNQ1 rs2237895 polymorphism is associated with the therapeutic response to sulfonylureas in Iranian type 2 diabetes mellitus patients. J Diabetes Metab Disord 21, 33–41 (2022). https://doi.org/10.1007/s40200-021-00931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00931-y

Keywords

Navigation