Skip to main content
Log in

The association between carbohydrate quality index and anthropometry, blood glucose, lipid profile and blood pressure in people with type 1 diabetes mellitus: a cross-sectional study in Iran

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background & aim

Both types and amounts of dietary carbohydrates have always been issues of discussion in diabetes mellitus. Therefore, this study aimed to investigate the association between carbohydrate quality index (CQI) and anthropometry, fasting blood glucose (FBG), lipid profile, systolic (SBP), and diastolic (DBP) blood pressure in adults with type 1 diabetes mellitus (T1DM).

Materials & methods

This was a cross-sectional study conducted on 261 adults with T1DM aged 17–36 years who referred to the Iranian Diabetes Association or Diabetes Clinic of Tehran University of Medical Sciences. Dietary data were collected using a 147-item food frequency questionnaire (FFQ). The CQI was calculated from the three indices including dietary fiber, glycemic index (GI), and solid carbohydrates/total carbohydrates ratio. The weight, height, waist circumference, physical activity, HcA1c, SBP, DBP of all participants were measured. Biochemical assessment including serum lipids and FBG levels were analyzed on 81 individuals.

Results

Participants with a higher CQI had a lower body weight, GI, glycemic load, energy, and macronutrient intake (p < 0.05). In addition, after adjustment for age, sex, duration of diabetes, body mass index, physical activity, and energy intake, the lowest level of glycated hemoglobin A1c (HbA1c) was observed in the third tertile of CQI (β = -0.2; SE = 0.1; p-trend = 0.04). No significant association was observed with respect to CQI with FBG, lipid profile, and blood pressure.

Conclusion

It was concluded that there was an inverse association between CQI and HbA1c. No significant association was found with respect to CQI with FBG, lipid profile and blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body Mass Index

CQI:

Carbohydrate Quality Index

DBP:

Diastolic Blood Pressure

FBG:

Fasting Blood Glucose

FFQ:

Food Frequency Questionnaire

GI:

Glycemic Index

GL:

Glycemic load

CVD:

Cardiovascular disease

HDL:

High-Density Lipoprotein

HbA1c:

Hemoglobin A1C

KNHANES:

The Korea National Health and Nutrition Examination Survey

LDL:

Low-Density Lipoprotein

PPG:

Post prandial plasma glucose

SBP:

Systolic Blood Pressure

T1DM:

Type 1 diabetes

T2DM:

Type 2 diabetes

TG:

Triglyceride

WC:

Waist Circumference

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes Atlas. Diabetes Res Clin Practice. 2019;157:e107843.

    Google Scholar 

  2. Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Fard HH, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promotion Perspectives. 2020;10(2):98.

    PubMed  PubMed Central  Google Scholar 

  3. Pishdad GR. Low incidence of type 1 diabetes in Iran. Diabetes Care. 2005;28(4):927–8.

    PubMed  Google Scholar 

  4. Tabish SA. 2007 Is diabetes becoming the biggest epidemic of the twenty-first century? International Journal of health sciences 1(2)

  5. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):481–97.

    PubMed  PubMed Central  Google Scholar 

  6. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine. 2019;47(1):22–7.

    Google Scholar 

  7. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63–9.

    CAS  PubMed  Google Scholar 

  8. Ozougwu J, Obimba K, Belonwu C, Unakalamba C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4(4):46–57.

    Google Scholar 

  9. Manuel DG, Schultz SE. Health-related quality of life and health-adjusted life expectancy of people with diabetes in Ontario, Canada, 1996–1997. Diabetes Care. 2004;27(2):407–14.

    PubMed  Google Scholar 

  10. Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans R. Temporal patterns in overweight and obesity in type 1 diabetes. Diabetic Med. 2009. https://doi.org/10.1111/j.1464-5491.2009.02956.x.

    Article  Google Scholar 

  11. Szadkowska A, Madej A, Ziolkowska K, Szymanska M, Jeziorny K, Mianowska B, et al. Gender and Age-Dependent effect of type 1 diabetes on obesity and altered body composition in young adults. Annals Agric Environ Med. 2015;22(1):124–8.

    Google Scholar 

  12. Group UPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The lancet. 1998;352(9131):837–53.

    Google Scholar 

  13. Turton JL, Raab R, Rooney KB. Low-carbohydrate diets for type 1 diabetes mellitus: a systematic review. PLoS ONE. 2018;13(3):e0194987.

    PubMed  PubMed Central  Google Scholar 

  14. Krzyżowska S, Matejko B, Kieć-Wilk B, Wilk M, Małecki M, Klupa T. Assessment of selected food intake frequency in patients with type 1 diabetes treated with personal insulin pumps. Rocz Panstw Zakl Hig. 2019;70(3):259–65.

    PubMed  Google Scholar 

  15. Lamichhane AP, Crandell JL, Jaacks LM, Couch SC, Lawrence JM, Mayer-Davis EJ. Longitudinal associations of nutritional factors with glycated hemoglobin in youth with type 1 diabetes: the search nutrition ancillary study. Am J Clin Nutr. 2015;101(6):1278–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutschall MD, Miller CK, Mitchell DC, Lawrence FR. A randomized behavioural trial targeting glycaemic index improves dietary, weight and metabolic outcomes in patients with type 2 diabetes. Public Health Nutr. 2009;12(10):1846–54.

    PubMed  Google Scholar 

  17. Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, Mayer-Davis E, et al. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the American diabetes association. Diabetes Care. 2004;27(9):2266–71.

    CAS  PubMed  Google Scholar 

  18. Ha V, Sievenpiper JL, De Souza RJ, Jayalath VH, Mirrahimi A, Agarwal A, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186(8):E252-62.

    PubMed  PubMed Central  Google Scholar 

  19. Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr. 2010;104(6):797–802.

    CAS  PubMed  Google Scholar 

  20. Brand-Miller J, Hayne S, Petocz P, Colagiuri S. Low–glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2003;26(8):2261–7.

    PubMed  Google Scholar 

  21. Augustin LS, Kendall CW, Jenkins DJ, Willett WC, Astrup A, Barclay AW, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815.

    CAS  PubMed  Google Scholar 

  22. Nuttall FQ. Dietary fiber in the management of diabetes. Diabetes. 1993;42(4):503–8.

    CAS  PubMed  Google Scholar 

  23. Buyken A, Toeller M, Heitkamp G, Vitelli F, Stehle P, Scherbaum W, et al. Relation of fibre intake to HbA1c and the prevalence of severe ketoacidosis and severe hypoglycaemia. Diabetologia. 1998;41(8):882–90.

    CAS  PubMed  Google Scholar 

  24. Toeller M, Buyken AE, Heitkamp G, de Pergola G. Fiber intake, serum cholesterol levels, and cardiovascular disease in European individuals with type 1 diabetes. Diabetes Care. 1999;22:B21.

    PubMed  Google Scholar 

  25. Asp N-G, Björck I, Nyman M. Physiological effects of cereal dietary fibre. Carbohyd Polym. 1993;21(2–3):183–7.

    Google Scholar 

  26. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Supplement 1):S120-43.

    PubMed  Google Scholar 

  27. Burger KN, Beulens JW, van der Schouw YT, Sluijs I, Spijkerman AM, Sluik D, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PloS one. 2012;7(8):e43127.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev. 2010;23(1):65–134.

    CAS  PubMed  Google Scholar 

  29. Hollænder PL, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies–. Am J Clin Nutr. 2015;102(3):556–72.

    PubMed  Google Scholar 

  30. Steffen LM, Jacobs DR Jr, Murtaugh MA, Moran A, Steinberger J, Hong C-P, et al. Whole grain intake is associated with lower body mass and greater insulin sensitivity among adolescents. Am J Epidemiol. 2003;158(3):243–50.

    PubMed  Google Scholar 

  31. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Investig. 2006;116(7):1793–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gellar L, Rovner AJ, Nansel TR. Whole grain and legume acceptability among youths with type 1 diabetes. Diabetes Educator. 2009;35(3):422–7.

    Google Scholar 

  33. Thomas D, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev. 2007. https://doi.org/10.1002/14651858.CD005105.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, Ludwig DS. Effects of a low–glycemic load vs low-fat diet in obese young adults: a randomized trial. JAMA. 2007;297(19):2092–102.

    CAS  PubMed  Google Scholar 

  35. Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC, et al. A low-glycemic load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial. Diabetes Care. 2005;28(12):2939–41.

    PubMed  Google Scholar 

  36. Nansel TR, Haynie DL, Lipsky LM, Laffel LM, Mehta SN. Multiple indicators of poor diet quality in children and adolescents with type 1 diabetes are associated with higher body mass index percentile but not glycemic control. J Acad Nutr Diet. 2012;112(11):1728–35.

    PubMed  PubMed Central  Google Scholar 

  37. Suara SB, Siassi F, Saaka M, Foroshani AR, Sotoudeh G. Association between carbohydrate quality index and general and abdominal obesity in women: a cross-sectional study from Ghana. BMJ open. 2019;9(12):e33038.

    Google Scholar 

  38. Bortsov AV, Liese AD, Bell RA, Dabelea D, D’Agostino RB, Hamman RF, et al. Sugar-sweetened and diet beverage consumption is associated with cardiovascular risk factor profile in youth with type 1 diabetes. Acta Diabetol. 2011;48(4):275–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrington S. The role of sugar-sweetened beverage consumption in adolescent obesity: a review of the literature. J Sch Nurs. 2008;24(1):3–12.

    PubMed  Google Scholar 

  40. Zazpe I, Sánchez-Taínta A, Santiago S, de la Fuente-Arrillaga C, Bes-Rastrollo M, Martínez JA, et al. Association between dietary carbohydrate intake quality and micronutrient intake adequacy in a Mediterranean cohort: the SUN (Seguimiento Universidad de Navarra) Project. Br J Nutr. 2014;111(11):2000–9.

    CAS  PubMed  Google Scholar 

  41. Santiago S, Zazpe I, Bes-Rastrollo M, Sánchez-Tainta A, Sayón-Orea C, de la Fuente-Arrillaga C, et al. Carbohydrate quality, weight change and incident obesity in a Mediterranean cohort: the SUN Project. Eur J Clin Nutr. 2015;69(3):297–302.

    CAS  PubMed  Google Scholar 

  42. Kim DY, Kim S, Lim H. Association between dietary carbohydrate quality and the prevalence of obesity and hypertension. J Hum Nutr Diet. 2018;31(5):587–96.

    PubMed  Google Scholar 

  43. Zazpe I, Santiago S, Gea A, Ruiz-Canela M, Carlos S, Bes-Rastrollo M, et al. Association between a dietary carbohydrate index and cardiovascular disease in the SUN (Seguimiento Universidad de Navarra) Project. Nutr Metab Cardiovasc Dis. 2016;26(11):1048–56.

    CAS  PubMed  Google Scholar 

  44. Liese AD, Bortsov A, Günther AL, Dabelea D, Reynolds K, Standiford DA, et al. Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: the SEARCH for Diabetes in Youth study. Circulation. 2011;123(13):1410–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Crouse J, Baumler M, Gleason L, Kaugars AS, Kichler JC. 2013 Glycemic Index, Glycemic Load, and Blood Glucose Outcomes in Adolescents With Type 1 Diabetes Mellitus. ICAN: Infant, Child, & Adolescent Nutrition 5(6): 361–367

  46. Qaseem A, Wilt TJ, Kansagara D, Horwitch C, Barry MJ, Forciea MA. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann Intern Med. 2018;168(8):569–76.

    PubMed  Google Scholar 

  47. Knopfholz J, Disserol CCD, Pierin AJ, Schirr FL, Streisky L, Takito LL, et al. Validation of the friedewald formula in patients with metabolic syndrome. Cholesterol. 2014;2014:1–5.

    Google Scholar 

  48. Vasheghani-Farahani A, Tahmasbi M, Asheri H, Ashraf H, Nedjat S, Kordi R. The Persian, last 7-day, long form of the International Physical Activity Questionnaire: translation and validation study. Asian J Sports Med. 2011;2(2):106.

    PubMed  PubMed Central  Google Scholar 

  49. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

    PubMed  Google Scholar 

  50. Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S. The Iranian version of international physical activity questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World Appl Sci J. 2012;18(8):1073–80.

    Google Scholar 

  51. Esfahani FH, Asghari G, Mirmiran P, Azizi F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol. 2010;20(2):150–8.

    PubMed  Google Scholar 

  52. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76(1):5–56.

    CAS  PubMed  Google Scholar 

  53. Sydney TUo. Glycemic Index Research Service (SUGiRS – GI Foods Advanced Search (web page)

  54. Taleban F-A, Esmaili M. 1999 Iranian Food Glycemic Index: "To Guide People with Diabetes and Blood Fat Services"

  55. Sánchez-Tainta A, Zazpe I, Bes-Rastrollo M, Salas-Salvadó J, Bullo M, Sorlí JV, et al. Nutritional adequacy according to carbohydrates and fat quality. Eur J Nutr. 2016;55(1):93–106.

    PubMed  Google Scholar 

  56. Rahelić D, Jenkins A, Božikov V, Pavić E, Jurić K, Fairgrieve C, et al. Glycemic index in diabetes. Coll Antropol. 2011;35(4):1363–8.

    PubMed  Google Scholar 

  57. Jenkins DJ, Kendall CW, McKeown-Eyssen G, Josse RG, Silverberg J, Booth GL, et al. Effect of a low–glycemic index or a high–cereal fiber diet on type 2 diabetes: a randomized trial. JAMA. 2008;300(23):2742–53.

    CAS  PubMed  Google Scholar 

  58. Buyken AE, Toeller M, Heitkamp G, Karamanos B, Rottiers R, Muggeo M, et al. Glycemic index in the diet of European outpatients with type 1 diabetes: Relations to glycated hemoglobin and serum lipids. Am J Clin Nutr. 2001;73(3):574–81.

    CAS  PubMed  Google Scholar 

  59. Jenkins D, Wolever T, Buckley G, Lam K, Giudici S, Kalmusky J, et al. Low-glycemic-index starchy foods in the diabetic diet. Am J Clin Nutr. 1988;48(2):248–54.

    CAS  PubMed  Google Scholar 

  60. Giacco R, Parillo M, Rivellese AA, Lasorella G, Giacco A, D’Episcopo L, et al. Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care. 2000;23(10):1461–6.

    CAS  PubMed  Google Scholar 

  61. Donga E, Dekkers OM, Corssmit E, Romijn JA. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol. 2015;173(1):101–9.

    CAS  PubMed  Google Scholar 

  62. Song S, Lee JE, Song WO, Paik H-Y, Song Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J Acad Nutr Diet. 2014;114(1):54–62.

    PubMed  Google Scholar 

  63. Ludwig DS, Hu FB, Tappy L, Brand-Miller J. 2018 Dietary carbohydrates: role of quality and quantity in chronic disease. Bmj

  64. Zazpe I, Sanchez-Tainta A, Santiago S, de la Fuente-Arrillaga C, Bes-Rastrollo M, Martínez JA, et al. Association between dietary carbohydrate intake quality and micronutrient intake adequacy in a Mediterranean cohort: the SUN (Seguimiento Universidad de Navarra) Project. Br J Nutr. 2014;111(11):2000–9.

    CAS  PubMed  Google Scholar 

  65. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364(25):2392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arumugam V, Lee J-S, Nowak JK, Pohle RJ, Nyrop JE, Leddy JJ, et al. A high-glycemic meal pattern elicited increased subjective appetite sensations in overweight and obese women. Appetite. 2008;50(2–3):215–22.

    PubMed  Google Scholar 

  67. Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287(18):2414–23.

    CAS  PubMed  Google Scholar 

  68. Esfahani A, Wong JM, Mirrahimi A, Srichaikul K, Jenkins DJ, Kendall CW. The glycemic index: physiological significance. J Am Coll Nutr. 2009;28(sup4):439S – 45.

    CAS  PubMed  Google Scholar 

  69. Burton-Freeman B, Keim N. Glycemic index, cholecystokinin, satiety and disinhibition: is there an unappreciated paradox for overweight women? Int J Obes. 2008;32(11):1647–54.

    CAS  Google Scholar 

  70. Augustin L, Franceschi S, Jenkins D, Kendall C, La Vecchia C. Glycemic index in chronic disease: a review. Eur J Clin Nutr. 2002;56(11):1049–71.

    CAS  PubMed  Google Scholar 

  71. Dikeman CL, Fahey GC Jr. Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr. 2006;46(8):649–63.

    CAS  PubMed  Google Scholar 

  72. Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev. 2010;23(1):135–45.

    CAS  PubMed  Google Scholar 

  73. Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12(9):724–39.

    CAS  PubMed  Google Scholar 

  74. Ludwig DS. Clinical update: the low-glycaemic-index diet. The Lancet. 2007;369(9565):890–2.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the participants of this study for their collaboration.

Funding

This research was supported by the Tehran University of Medical Sciences. Grant number 94–03-103–30046.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Qorbani or Gity Sotoudeh.

Ethics declarations

Conflict of interest

None to be mentioned.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebraeili, H., Shabbidar, S., Sajjadpour, Z. et al. The association between carbohydrate quality index and anthropometry, blood glucose, lipid profile and blood pressure in people with type 1 diabetes mellitus: a cross-sectional study in Iran. J Diabetes Metab Disord 20, 1349–1358 (2021). https://doi.org/10.1007/s40200-021-00864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00864-6

Keywords

Navigation