Skip to main content
Log in

The low-carbohydrate-diet score is associated with resting metabolic rate: an epidemiologic study among Iranian adults

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Low-carbohydrate diet (LCD) has been used for weight loss and preventing obesity, but the association of adherence to LCD and resting metabolic rate (RMR) has not been investigated. This study aimed to investigate the association between the low-carbohydrate-diet score (LCDS) and RMR among Iranian adults.

Methods

This cross-sectional study was conducted on 270 Iranian adults 18–70 y of age. To assess dietary intakes, participants completed a validated food frequency questionnaire. The LCDS was calculated based on carbohydrate, protein and fat intake, expressed as a percentage of energy. The higher score indicates the lower carbohydrate and the higher protein and fat intake. RMR was measured by indirect calorimetry after an overnight fast.

Results

Multivariate-adjusted means showed that RMR significantly increased across tertiles (p = 0.041). However, there were no significant differences in the mean of fat mass (FM) and fat-free mass (FFM) across tertiles of LCDS (p = 0.986 and p = 0.621, respectively). Also LCDS and RMR (r = 0.14, p = 0.021) were found to be correlated, but LCDS and FFM (r = 0.06, p = 0.323), FM (r = −0.05, p = 0.412), had no statistically significant correlation. RMR had a significant positive association with LCDs in the crude model (β = 18.81, 95% CI: 2.55, 35.07, P = 0.024). Moreover, after controlling for covariates this association changed to non-significant (β = −0.14, 95% CI: −7.05, 19.25, P = 0.03).

Conclusion

Adherence to diets lower in carbohydrates and higher in fat and protein were associated with higher RMR. Further studies with a larger sample size are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Since the privacy of research participants may be compromised, we cannot make the information publicly available.

References

  1. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89. https://doi.org/10.1007/s40273-014-0243-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020;360:1–8.

    Google Scholar 

  3. Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS Jr, Kelly TN, He J, Bazzano LA. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176 Suppl 7(Suppl 7):S44-54. https://doi.org/10.1093/aje/kws264.

    Article  PubMed  Google Scholar 

  4. Karl JP, Roberts SB, Schaefer EJ, Gleason JA, Fuss P, Rasmussen H, Saltzman E, Das SK. Effects of carbohydrate quantity and glycemic index on resting metabolic rate and body composition during weight loss. Obesity (Silver Spring). 2015;23(11):2190–8. https://doi.org/10.1002/oby.21268.

    Article  CAS  Google Scholar 

  5. Ebbeling CB, Feldman HA, Klein GL, Wong JMW, Bielak L, Steltz SK, Luoto PK, Wolfe RR, Wong WW, Ludwig DS. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ. 2018;363: k4583. https://doi.org/10.1136/bmj.k4583.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gomez-Arbelaez D, Crujeiras AB, Castro AI, Martinez-Olmos MA, Canton A, Ordoñez-Mayan L, Sajoux I, Galban C, Bellido D, Casanueva FF. Resting metabolic rate of obese patients under very low calorie ketogenic diet. Nutr Metab (Lond). 2018;15:18. https://doi.org/10.1186/s12986-018-0249-z.

    Article  CAS  Google Scholar 

  7. Bao W, Li S, Chavarro JE, Tobias DK, Zhu Y, Hu FB, Zhang C. Low carbohydrate-diet scores and long-term risk of type 2 diabetes among women with a history of gestational diabetes mellitus: a prospective cohort study. Diabetes Care. 2016;39(1):43–9. https://doi.org/10.2337/dc15-1642.

    Article  CAS  PubMed  Google Scholar 

  8. Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, Yancy WS, Phinney SD. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86(2):276–84. https://doi.org/10.1093/ajcn/86.2.276.

    Article  CAS  PubMed  Google Scholar 

  9. Martens EA, Gatta-Cherifi B, Gonnissen HK, Westerterp-Plantenga MS. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans. PLoS ONE. 2014;9(10): e109617. https://doi.org/10.1371/journal.pone.0109617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010;153(5):289–98. https://doi.org/10.7326/0003-4819-153-5-201009070-00003.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bell KJ, King BR, Shafat A, Smart CE. The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes. J Diabetes Complications. 2015;29(8):1323–9. https://doi.org/10.1016/j.jdiacomp.2015.08.014.

    Article  PubMed  Google Scholar 

  12. Accurso A, Bernstein RK, Dahlqvist A, Draznin B, Feinman RD, Fine EJ, Gleed A, Jacobs DB, Larson G, Lustig RH, Manninen AH, McFarlane SI, Morrison K, Nielsen JV, Ravnskov U, Roth KS, Silvestre R, Sowers JR, Sundberg R, Volek JS, Westman EC, Wood RJ, Wortman J, Vernon MC. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab (Lond). 2008;5:9. https://doi.org/10.1186/1743-7075-5-9.

    Article  CAS  Google Scholar 

  13. Blundell JE, Caudwell P, Gibbons C, Hopkins M, Naslund E, King N, Finlayson G. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Dis Model Mech. 2012;5(5):608–13. https://doi.org/10.1242/dmm.009837.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miller WC, Lindeman AK, Wallace J, Niederpruem M. Diet composition, energy intake, and exercise in relation to body fat in men and women. Am J Clin Nutr. 1990;52(3):426–30. https://doi.org/10.1093/ajcn/52.3.426.

    Article  CAS  PubMed  Google Scholar 

  15. Gazzaniga JM, Burns TL. Relationship between diet composition and body fatness, with adjustment for resting energy expenditure and physical activity, in preadolescent children. Am J Clin Nutr. 1993;58(1):21–8. https://doi.org/10.1093/ajcn/58.1.21.

    Article  CAS  PubMed  Google Scholar 

  16. Bolton-Smith C, Woodward M. Dietary composition and fat to sugar ratios in relation to obesity. Int J Obes Relat Metab Disord. 1994;18(12):820–8.

    CAS  PubMed  Google Scholar 

  17. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, Ludwig DS. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307(24):2627–34. https://doi.org/10.1001/jama.2012.6607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baba NH, Sawaya S, Torbay N, Habbal Z, Azar S, Hashim SA. High protein vs high carbohydrate hypoenergetic diet for the treatment of obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 1999;23(11):1202–6. https://doi.org/10.1038/sj.ijo.0801064.

    Article  CAS  PubMed  Google Scholar 

  19. Das SK, Gilhooly CH, Golden JK, Pittas AG, Fuss PJ, Dallal GE, McCrory MA, Saltzman E, Roberts SB. Long term effects of energy-restricted diets differing in glycemic load on metabolic adaptation and body composition. Open Nutr J. 2007;85(4):1023–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bazzano LA, Hu T, Reynolds K, Yao L, Bunol C, Liu Y, Chen CS, Klag MJ, Whelton PK, He J. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann Intern Med. 2014;161(5):309–18. https://doi.org/10.7326/m14-0180.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Halton TL, Liu S, Manson JE, Hu FB. Low-carbohydrate-diet score and risk of type 2 diabetes in women. Am J Clin Nutr. 2008;87(2):339–46. https://doi.org/10.1093/ajcn/87.2.339.

    Article  CAS  PubMed  Google Scholar 

  22. de Koning L, Fung TT, Liao X, Chiuve SE, Rimm EB, Willett WC, Spiegelman D, Hu FB. Low-carbohydrate diet scores and risk of type 2 diabetes in men. Am J Clin Nutr. 2011;93(4):844–50. https://doi.org/10.3945/ajcn.110.004333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eslamian G, Mirmiran P, Asghari G, Hosseini-Esfahani F, Yuzbashian E, Azizi F. Low carbohydrate diet score does not predict metabolic syndrome in children and adolescents: Tehran lipid and glucose study. Arch Iran Med. 2014;17(6):417–22.

    PubMed  Google Scholar 

  24. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010;13(5):654–62. https://doi.org/10.1017/s1368980009991698.

    Article  PubMed  Google Scholar 

  25. Halton TL, Willett WC, Liu S, Manson JE, Albert CM, Rexrode K, Hu FB. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N Engl J Med. 2006;355(19):1991–2002. https://doi.org/10.1056/NEJMoa055317.

    Article  CAS  PubMed  Google Scholar 

  26. pdf, I.R.C.J.h.w.i.k.s.s. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)-short and long forms. 2005.

  27. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA. 2004;292(20):2482–90. https://doi.org/10.1001/jama.292.20.2482.

    Article  CAS  PubMed  Google Scholar 

  28. Jafari-Maram S, Daneshzad E, Brett NR, Bellissimo N, Azadbakht L. Association of low-carbohydrate diet score with overweight, obesity and cardiovascular disease risk factors: a cross-sectional study in Iranian women. J Cardiovasc Thorac Res. 2019;11(3):216–23. https://doi.org/10.15171/jcvtr.2019.36.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wien MA, Sabaté JM, Iklé DN, Cole SE, Kandeel FR. Almonds vs complex carbohydrates in a weight reduction program. Int J Obes Relat Metab Disord. 2003;27(11):1365–72. https://doi.org/10.1038/sj.ijo.0802411.

    Article  CAS  PubMed  Google Scholar 

  30. Jaceldo-Siegl K, Sabaté J, Batech M, Fraser GE. Influence of body mass index and serum lipids on the cholesterol-lowering effects of almonds in free-living individuals. Nutr Metab Cardiovasc Dis. 2011;21(Suppl 1):S7-13. https://doi.org/10.1016/j.numecd.2011.03.007.

    Article  CAS  PubMed  Google Scholar 

  31. Sabaté J, Cordero-Macintyre Z, Siapco G, Torabian S, Haddad E. Does regular walnut consumption lead to weight gain? Br J Nutr. 2005;94(5):859–64. https://doi.org/10.1079/bjn20051567.

    Article  PubMed  Google Scholar 

  32. Bes-Rastrollo M, Wedick NM, Martinez-Gonzalez MA, Li TY, Sampson L, Hu FB. Prospective study of nut consumption, long-term weight change, and obesity risk in women. Am J Clin Nutr. 2009;89(6):1913–9. https://doi.org/10.3945/ajcn.2008.27276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rajaram S, Sabaté J. Nuts, body weight and insulin resistance. Br J Nutr. 2006;96(Suppl 2):S79-86. https://doi.org/10.1017/bjn20061867.

    Article  CAS  PubMed  Google Scholar 

  34. Lairon D, Arnault N, Bertrais S, Planells R, Clero E, Hercberg S, Boutron-Ruault MC. Dietary fiber intake and risk factors for cardiovascular disease in French adults. Am J Clin Nutr. 2005;82(6):1185–94. https://doi.org/10.1093/ajcn/82.6.1185.

    Article  CAS  PubMed  Google Scholar 

  35. Schröder H, Marrugat J, Vila J, Covas MI, Elosua R. Adherence to the traditional mediterranean diet is inversely associated with body mass index and obesity in a spanish population. J Nutr. 2004;134(12):3355–61. https://doi.org/10.1093/jn/134.12.3355.

    Article  PubMed  Google Scholar 

  36. Blomhoff R, Carlsen MH, Andersen LF, Jacobs DR Jr. Health benefits of nuts: potential role of antioxidants. Br J Nutr. 2006;96(Suppl 2):S52-60. https://doi.org/10.1017/bjn20061864.

    Article  CAS  PubMed  Google Scholar 

  37. Segura R, Javierre C, Lizarraga MA, Ros E. Other relevant components of nuts: phytosterols, folate and minerals. Br J Nutr. 2006;96(Suppl 2):S36-44. https://doi.org/10.1017/bjn20061862.

    Article  CAS  PubMed  Google Scholar 

  38. Alper CM, Mattes RD. Effects of chronic peanut consumption on energy balance and hedonics. Int J Obes Relat Metab Disord. 2002;26(8):1129–37. https://doi.org/10.1038/sj.ijo.0802050.

    Article  CAS  PubMed  Google Scholar 

  39. Couet C, Delarue J, Ritz P, Antoine JM, Lamisse F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes Relat Metab Disord. 1997;21(8):637–43. https://doi.org/10.1038/sj.ijo.0800451.

    Article  CAS  PubMed  Google Scholar 

  40. Logan SL, Spriet LL. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS ONE. 2015;10(12): e0144828. https://doi.org/10.1371/journal.pone.0144828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noreen EE, Sass MJ, Crowe ML, Pabon VA, Brandauer J, Averill LK. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr. 2010;7:31. https://doi.org/10.1186/1550-2783-7-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jannas-Vela S, Roke K, Boville S, Mutch DM, Spriet LL. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: a randomized controlled trial. PLoS ONE. 2017;12(2): e0172576. https://doi.org/10.1371/journal.pone.0172576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Souza RJ, Bray GA, Carey VJ, Hall KD, LeBoff MS, Loria CM, Laranjo NM, Sacks FM, Smith SR. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr. 2012;95(3):614–25. https://doi.org/10.3945/ajcn.111.026328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept. 2005;130(1–2):97–103. https://doi.org/10.1016/j.regpep.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  45. Sun Y. Ghrelin receptor controls obesity by fat burning. Oncotarget. 2015;6(9):6470–1. https://doi.org/10.18632/oncotarget.3668.

    Article  PubMed  PubMed Central  Google Scholar 

  46. ParvareshRizi E, Loh TP, Baig S, Chhay V, Huang S, Caleb Quek J, Tai ES, Toh SA, Khoo CM. A high carbohydrate, but not fat or protein meal attenuates postprandial ghrelin, PYY and GLP-1 responses in Chinese men. PLoS One. 2018;13(1):e0191609. https://doi.org/10.1371/journal.pone.0191609.

    Article  CAS  Google Scholar 

  47. Pradhan G, Samson SL, Sun Y. Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care. 2013;16(6):619–24. https://doi.org/10.1097/MCO.0b013e328365b9be.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu T, Yao L, Reynolds K, Niu T, Li S, Whelton P, He J, Bazzano L. The effects of a low-carbohydrate diet on appetite: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2016;26(6):476–88. https://doi.org/10.1016/j.numecd.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the subjects who participated in the study.

Author information

Authors and Affiliations

Authors

Contributions

SS-b, Kdj and SM contributed to the conception and design of the study. ME, NB, and SD participated in the acquisition of data. SM, PGh, HSh and SS-b contributed to data analysis, data interpretation, and manuscript drafting and SS-b finalized the manuscript. All of the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Sakineh Shab-Bidar.

Ethics declarations

Ethics approval

This study does not involve any animal testing. This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving research study participants were approved by the Tehran University of Medical Sciences (ethic Number: IR.TUMS.VCR.REC.1396.4306). All participants signed written informed consent before the start of the study.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, S., Ghorbaninejad, P., Shahinfar, H. et al. The low-carbohydrate-diet score is associated with resting metabolic rate: an epidemiologic study among Iranian adults. J Diabetes Metab Disord 20, 1145–1153 (2021). https://doi.org/10.1007/s40200-021-00832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00832-0

Keywords

Navigation