Skip to main content
Log in

In vivo antidiabetic potential of standardized Gymnocarpos decandrus Forssk. Extract

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Gymnocarpos decandrus (Caryophyllaceae) is a well-known wild plant used as a food for grazing animals. Recently it showed potent antidiabetic potential beside its established anti-inflammatory, analgesic and diuretic activities. G. decandrus antidiabetic potential was reported through in-vitro models and resulted in promising α-amylase, α-glucosidase and antiviral Coxsackie B4 inhibitory activities; however no in-vivo studies were conducted.

Purpose

This study aims to examine Gymnocarpos decandrus ethanol extract (GDEE) safety and to evaluate its in vivo antidiabetic potential.

Method

Adult albino rats were injected intraperitoneally with alloxan to induce diabetes mellitus and the glucose level was measured after two and four weeks against metformin as a standard drug. Additionally, GDEE characterization and standardization were carried out.

Results

GDEE LD50 was up to 5.8 mg/kg and exhibited significant antidiabetic activity 77.17% comparable to the standard drug metformin. Its total phenolics, and flavonoids amounted 127.2 ± 0.23 and 85.5 ± 0.21 mg/g respectively. Vitexin was used as a marker compound for GDEE (140.70 mg/100 gm).

Conclusion

This study represents the sole in vivo scientific validation of G. decandrus recently documented in vitro antidiabetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.

  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  Google Scholar 

  3. National Information Center for Health and Population.  The burden of disease and injury in Egypt (mortality and morbidity); 2004.

  4. Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J. 2017;69(2):151–9.

    Article  Google Scholar 

  5. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metab. 2006;14(1):1.

  6. Chauhan A, Sharma P, Srivastava P, Kumar N, Dudhe R. Plants having potential antidiabetic activity: a review. Pharm Lett. 2010;2(3):369–87.

    CAS  Google Scholar 

  7. Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: a review. Planta Med. 2014;80(05):354–77.

    Article  CAS  Google Scholar 

  8. El-Hawary SS, Okba MM, Lotfy RA, Mubarek MM. A botanical study and estimation of certain primary metabolites of Gymnocarpos decandrus Forssk. Jordan J Biol Sci. 2019;12(5).

  9. Bhatt A, Santo A. Effects of photoperiod, thermoperiod, and salt stress on Gymnocarpos decandrus seeds: potential implications in restoration ecology activities. Botany. 2017;95(11):1093–8.

    Article  CAS  Google Scholar 

  10. El-Hawary SS, Mubarek MM, Lotfy RA, Hassan AR, Sobeh M, Okba MM. Validation of antidiabetic potential of Gymnocarpos decandrus Forssk. Nat Prod Res. 2020;1–6.

  11. Sallam A, Galala AA. Inhibition of alpha-amylase activity by Gymnocarpos decandrus Forssk. Constituents. Int J Pharm Phytochem Res. 2017;9:873–9.

    Google Scholar 

  12. Bouaziz M, Dhouib A, Loukil S, Boukhris M, Sayadi S. Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. Afr J Biotechnol. 2009;8(24):7017–27.

    CAS  Google Scholar 

  13. Fathy H. Polyphenolics from Gymnocarpos decandrus Forssk roots and their biological activities. Nat Prod Res. 2019;1–5.

  14. Mukherjee B, Banerjee S, Mondal L, Chakraborty S, Chanda D, Perera JAC. Bioactive flavonoid Apigenin and its nanoformulations: a promising hope for diabetes and cancer. In: Nanomedicine for bioactives. Springer; 2020, p. 367–82.

  15. Olaokun OO, McGaw LJ, Janse van Rensburg I, Eloff JN, Naidoo V. Antidiabetic activity of the ethyl acetate fraction of Ficus lutea (Moraceae) leaf extract: comparison of an in vitro assay with an in vivo obese mouse model. BMC Complement Altern Med. 2016;16:110–110.

  16. Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. J Pharm Pharmacol. 2017;69(10):1253–64.

    Article  CAS  Google Scholar 

  17. Sangeetha R. Luteolin in the management of type 2 diabetes mellitus. Curr Res Nutr Food Sci J. 2019;7(2):393–8.

    Article  Google Scholar 

  18. See DM, Tilles JG. Pathogenesis of virus-induced diabetes in mice. J Infect Dis. 1995;171(5):1131–8.

    Article  CAS  Google Scholar 

  19. Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology. 2004;329(2):381–94.

    Article  CAS  Google Scholar 

  20. Trinh BT, Staerk D, Jäger AK. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. J Ethnopharmacol. 2016;186:189–95.

    Article  CAS  Google Scholar 

  21. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discovery. 2010;9(3):203–14.

    Article  CAS  Google Scholar 

  22. Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discovery. 2011;10(6):428–38.

    Article  CAS  Google Scholar 

  23. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discovery. 2012;11(3):191.

    Article  CAS  Google Scholar 

  24. Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1.

    Article  CAS  Google Scholar 

  25. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discovery. 2011;10(7):507–19.

    Article  CAS  Google Scholar 

  26. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discovery. 2004;3(4):353–9.

    Article  CAS  Google Scholar 

  27. Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discovery. 2011;10(8):579–90.

    Article  CAS  Google Scholar 

  28. Aiyegoro OA, Okoh AI. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complement Altern Med. 2010;10(1):21.

    Article  Google Scholar 

  29. Zou Y, Lu Y, Wei D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem. 2004;52(16):5032–9.

    Article  CAS  Google Scholar 

  30. Choo C, Sulong N, Man F, Wong T. Vitexin and isovitexin from the leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J Ethnopharmacol. 2012;142(3):776–81.

    Article  CAS  Google Scholar 

  31. Nurdiana S, Goh Y, Hafandi A, Dom S, Syimal'ain AN, Syaffinaz NN, Ebrahimi M. Improvement of spatial learning and memory, cortical gyrification patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin. J Tradit Complement Med. 2018;8(1):190–202.

    Article  CAS  Google Scholar 

  32. Ardalani H, Vidkjær NH, Laursen BB, Kryger P, Fomsgaard IS. Dietary quercetin impacts the concentration of pesticides in honey bees. Chemosphere. 2021;262:127848.

    Article  CAS  Google Scholar 

  33. OECD O. Guideline for the testing of chemicals. Acute oral toxicity e acute toxic class method: test no-423. Paris: Organization for Economic Cooperation and Development; 2001.

    Google Scholar 

  34. Ramakrishnan S, Sulochana K. Manual of Medical laboratory techniques. JP Medical Ltd.; 2012.

  35. Maheshwari N. Clinical biochemistry. Jaypee Brothers Publishers; 2008.

  36. Huang Y, Hou T. Hypoglycaemic effect of Artemisia sphaerocephala Krasch seed polysaccharide in alloxan-induced diabetic rats. Swiss Med Wkly. 2006;136(33–34):529–32.

    PubMed  Google Scholar 

  37. Jandaghi P, Noroozi M, Ardalani H, Alipour M. Lemon balm: a promising herbal therapy for patients with borderline hyperlipidemia—a randomized double-blind placebo-controlled clinical trial. Complement Ther Med. 2016;26:136–40.

  38. Yousefi E, Zareiy S, Zavoshy R, Noroozi M, Jahanihashemi H, Ardalani H. Fenugreek: a therapeutic complement for patients with borderline hyperlipidemia: a randomised, double-blind, placebo-controlled, clinical trial. Adv Integr Med. 2017;4(1):31–5.

    Article  Google Scholar 

  39. Shukia R, Sharma S, Puri D, Prabhu K, Murthy P. Medicinal plants for treatment of diabetes mellitus. Indian J Clin Biochem. 2000;15(1):169–77.

    Article  CAS  Google Scholar 

  40. Sandu R, Tarţău L, Miron A, Zagnat M, Ghiciuc C, Lupuşoru C. Experimental researches on acute toxicity of a Bidens tripartita extract in mice-preliminary investigation. Rev Med Chir Soc Med Nat Iasi. 2012;116(4):1230–4.

  41. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015;12(1):60.

    Article  Google Scholar 

  42. Lu Y-H, Tian C-R, Gao C-Y, Wang X-Y, Yang X, Chen Y-X, Liu Z-Z. Phenolic profile, antioxidant and enzyme inhibitory activities of Ottelia acuminata, an endemic plant from southwestern China. Ind Crop Prod. 2019;138:111423.

  43. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(suppl 2):S157–63.

    Article  CAS  Google Scholar 

  44. Gallagher EJ, LeRoith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med. 2010;77(5):511–23.

    Article  Google Scholar 

  45. Migdal C, Serres M. Reactive oxygen species and oxidative stress. Med Sci. 2011;27(4):405–12.

    Google Scholar 

  46. Khater M, Ravishankar D, Greco F, Osborn HM. Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Med Chem. 2019;11(21):2845–67.

  47. Skalski B, Kontek B, Olas B, Żuchowski J, Stochmal A. Phenolic fraction and nonpolar fraction from sea buckthorn leaves and twigs: chemical profile and biological activity. Future Med Chem. 2018;10(20):2381–94.

  48. Farsi E, Shafaei A, Hor SY, Ahamed MBK, Yam MF, Attitalla IH, Asmawi MZ, Ismail Z. Correlation between enzymes inhibitory effects and antioxidant activities of standardized fractions of methanolic extract obtained from Ficus deltoidea leaves. Afr J Biotech. 2011;10(67):15184–94.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona M. Okba.

Ethics declarations

Not applicable.

Conflict of interest

No conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Seham S. El-Hawary and Mahmoud M. Mubarek contributed equally to this work and both are considered as first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hawary, S.S., Mubarek, M.M., Lotfy, R.A. et al. In vivo antidiabetic potential of standardized Gymnocarpos decandrus Forssk. Extract. J Diabetes Metab Disord 20, 1129–1135 (2021). https://doi.org/10.1007/s40200-021-00829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00829-9

Keywords

Navigation