Validity of continuous metabolic syndrome score for predicting metabolic syndrome; a systematic review and meta-analysis

Abstract

Background

Nowadays, use of continuous metabolic syndrome (cMetS) score has been suggested to improve recognition of metabolic syndrome (MetS). The aim of this study was to evaluate the validity of cMetS scores for predicting MetS.

Methods

We searched the electronic databases included MEDLINE/PubMed, Embase, ISI Web of Science, and Scopus from 1 January 1980 to 30 September 2020. Observational studies on participants with different cMetS scores were included in this meta-analysis. The sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR) and diagnostic odds ratio (DOR) with 95% CI were calculated.

Results

Ten studies involving a total of 25,073 participants were included. All studies had cross-sectional design. The pooled sensitivity and specificity of cMetS scores for predicting MetS were 0.90 (95% CI: 0.83 to 0.95) and 0.86 (95% CI: 0.83 to 0.89), respectively. Moreover, cMetS scores had the pooled LR+ of 6.5 (95% CI: 5.0 to 8.6), and a pooled (LR-) of 0.11 (95% CI: 0.063 to 0.21). The pooled DOR of cMetS scores to predict MetS were 57 (95% CI: 26 to 127).

Conclusions

The high sensitivity and specificity of cMetS scores indicates that it has a high accuracy to predict the risk of MetS. Furthermore, the cMetS scores has a good ability to rule out healthy people.

Study registration

This study was registered as PROSPERO CRD42020157273.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421. PMID: 12485966.

  2. 2.

    Amirkalali B, Fakhrzadeh H, Sharifi F, Kelishadi R, Zamani F, Asayesh H, Safiri S, Samavat T, Qorbani M. Prevalence of metabolic syndrome and its components in the Iranian adult population: a systematic review and meta-analysis. Iranian red crescent medical journal. 2015 Dec;17(12).

  3. 3.

    Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. Jama. 2012;307(5):491–7. https://doi.org/10.1001/jama.2012.39.

    Article  PubMed  Google Scholar 

  4. 4.

    Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills A, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health. 2017;17(1):101. https://doi.org/10.1186/s12889-017-4041-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14:9.

    Article  Google Scholar 

  6. 6.

    Marquez-Sandoval F, et al. The prevalence of metabolic syndrome in Latin America: a systematic review. Public Health Nutr. 2011;14(10):1702–13.

    CAS  Article  Google Scholar 

  7. 7.

    Eisenmann JC. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc Diabetol. 2008;7(1):17. https://doi.org/10.1186/1475-2840-7-17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Heshmat R, Heidari M, Ejtahed H-S, Motlagh ME, Mahdavi-Gorab A, Ziaodini H, et al. Validity of a continuous metabolic syndrome score as an index for modeling metabolic syndrome in children and adolescents: the CASPIAN-V study. Diabetology & metabolic syndrome. 2017;9(1):89. https://doi.org/10.1186/s13098-017-0291-4.

    Article  Google Scholar 

  9. 9.

    Magnussen CG, Cheriyan S, Sabin MA, Juonala M, Koskinen J, Thomson R, et al. Continuous and dichotomous metabolic syndrome definitions in youth predict adult type 2 diabetes and carotid artery intima media thickness: the Cardiovascular Risk in Young Finns Study. The Journal of pediatrics. 2016;171:97–103. e3. https://doi.org/10.1016/j.jpeds.2015.10.093

  10. 10.

    Magnussen CG, Koskinen J, Juonala M, Chen W, Srinivasan SR, Sabin MA, et al. A diagnosis of the metabolic syndrome in youth that resolves by adult life is associated with a normalization of high carotid intima-media thickness and type 2 diabetes mellitus risk: the Bogalusa heart and cardiovascular risk in young Finns studies. J Am Coll Cardiol. 2012;60(17):1631–9. https://doi.org/10.1016/j.jacc.2012.05.056.

    Article  PubMed  Google Scholar 

  11. 11.

    Kelly AS, Steinberger J, Jacobs DR Jr, Hong C-P, Moran A, Sinaiko AR. Predicting cardiovascular risk in young adulthood from the metabolic syndrome, its component risk factors, and a cluster score in childhood. International Journal of Pediatric Obesity. 2011;6(sup3):e283–9. https://doi.org/10.3109/17477166.2010.528765.

    Article  PubMed  Google Scholar 

  12. 12.

    Pandit D, Chiplonkar S, Khadilkar A, Kinare A, Khadilkar V. Efficacy of a continuous metabolic syndrome score in Indian children for detecting subclinical atherosclerotic risk. Int J Obes. 2011;35(10):1318–24. https://doi.org/10.1038/ijo.2011.138.

    CAS  Article  Google Scholar 

  13. 13.

    Ragland DR. Dichotomizing continuous outcome variables: dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology. 1992;3:434–40. https://doi.org/10.1097/00001648-199209000-00009.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gurka MJ, Golden SH, Musani SK, Sims M, Vishnu A, Guo Y, et al. Independent associations between a metabolic syndrome severity score and future diabetes by sex and race: the atherosclerosis risk in communities study and Jackson heart study. Diabetologia. 2017;60(7):1261–70. https://doi.org/10.1007/s00125-017-4267-6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Brambilla P, Pietrobelli A. Behind and beyond the pediatric metabolic syndrome. Ital J Pediatr. 2009;35(1):41. https://doi.org/10.1186/1824-7288-35-41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mehrkash M, Kelishadi R, Mohammadian S, Mousavinasab F, Qorbani M, Hashemi ME, et al. Obesity and metabolic syndrome among a representative sample of Iranian adolescents. Southeast Asian Journal of Tropical Medicineand Public Health. 2012 May 1;43(3):756.

    Google Scholar 

  17. 17.

    Shi P, Goodson JM, Hartman M-L, Hasturk H, Yaskell T, Vargas J, et al. Continuous metabolic syndrome scores for children using salivary biomarkers. PloS one. 2015;10(9). https://doi.org/10.1371/journal.pone.0138979.

  18. 18.

    Eisenmann JC, Laurson KR, DuBose KD, Smith BK, Donnelly JE. Construct validity of a continuous metabolic syndrome score in children. Diabetology & metabolic syndrome. 2010;2(1):8. https://doi.org/10.1186/1758-5996-2-8.

    CAS  Article  Google Scholar 

  19. 19.

    Shen BJ, Goldberg RB, Llabre MM, Schneiderman N. Is the factor structure of the metabolic syndrome comparable between men and women and across three ethnic groups: the Miami community health study. Ann Epidemiol. 2006;16(2):131–7. https://doi.org/10.1016/j.annepidem.2005.06.049.

    Article  PubMed  Google Scholar 

  20. 20.

    Pladevall M, Singal B, Williams LK, Brotons C, Guyer H, Sadurni J, et al. A single factor underlies the metabolic syndrome: a confirmatory factor analysis: response to McCaffery et al. Diabetes Care. 2006;29(7):1720–1. https://doi.org/10.2337/dc06-0800.

    Article  Google Scholar 

  21. 21.

    Shafiee G, Kelishadi R, Heshmat R, Qorbani M, Motlagh ME, Aminaee T, et al. First report on the validity of a continuous metabolic syndrome score as an indicator for metabolic syndrome in a national sample of paediatric population—the CASPIAN-III study. Endokrynologia Polska. 2013;64(4):278–84. https://doi.org/10.5603/EP.2013.0006.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Martínez-Vizcaíno V, Martínez MS, Aguilar FS, Martínez SS, Gutiérrez RF, López MS, et al. Validity of a single-factor model underlying the metabolic syndrome in children: a confirmatory factor analysis. Diabetes Care. 2010;33(6):1370–2. https://doi.org/10.2337/dc09-2049.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gurka MJ, Ice CL, Sun SS, DeBoer MD. A confirmatory factor analysis of the metabolic syndrome in adolescents: an examination of sex and racial/ethnic differences. Cardiovasc Diabetol. 2012;11(1):128. https://doi.org/10.1186/1475-2840-11-128.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  25. 25.

    Khoshhali M, Heshmat R, Motlagh ME, Ziaodini H, Hadian M, Aminaei T, et al. Comparing the validity of continuous metabolic syndrome risk scores for predicting pediatric metabolic syndrome: the CASPIAN-V study. J Pediatr Endocrinol Metab. 2019;32(4):383–9. https://doi.org/10.1515/jpem-2018-0384.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Reuter CP, Andersen LB, Valim ARD, Reuter EM, Borfe L, Renner JDP, et al. Cutoff points for continuous metabolic risk score in adolescents from southern Brazil. American Journal of Human Biology. 2019;31(2). https://doi.org/10.1002/ajhb.23211.

  27. 27.

    Wiley JF, Carrington MJ. A metabolic syndrome severity score: a tool to quantify cardio-metabolic risk. Psychosom Med. 2016;78(3):A103–A4. https://doi.org/10.1016/j.ypmed.2016.04.006.

    Article  Google Scholar 

  28. 28.

    Sawant SP, Amin AS. Use of continuous metabolic syndrome score in overweight and obese children. Indian J Pediatr. 2019;86(10):909–14. https://doi.org/10.1007/s12098-019-02994-5.

    Article  PubMed  Google Scholar 

  29. 29.

    Hosseini M, Sarrafzadegan N, Kelishadi R, Monajemi M, Asgary S, Vardanjani HM. Population-based metabolic syndrome risk score and its determinants: the Isfahan healthy heart program. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences 2014;19(12):1167. PMID: 25709659, 1174.

  30. 30.

    Okosun IS, Lyn R, Davis-Smith M, Eriksen M, Seale P. Validity of a continuous metabolic risk score as an index for modeling metabolic syndrome in adolescents. Ann Epidemiol. 2010;20(11):843–51. https://doi.org/10.1016/j.annepidem.2010.08.001.

    Article  PubMed  Google Scholar 

  31. 31.

    Greiner M, Pfeiffer D, Smith R. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive veterinary medicine. 2000;45(1–2):23–41. https://doi.org/10.1016/S0167-5877(00)00115-X.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Guseman EH, Eisenmann JC, Laurson KR, Cook SR, Stratbucker W. Calculating a continuous metabolic syndrome score using nationally representative reference values. Acad Pediatr. 2018;18(5):589–92. https://doi.org/10.1016/j.acap.2018.02.011.

    Article  PubMed  Google Scholar 

  33. 33.

    de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the third National Health and nutrition examination survey. Circulation. 2004;110(16):2494–7. https://doi.org/10.1161/01.CIR.0000145117.40114.C7.

    Article  Google Scholar 

  34. 34.

    Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of childhood BMI to adult adiposity: the Bogalusa heart study. Pediatrics. 2005;115(1):22–7. https://doi.org/10.1542/peds.2004-0220.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful of Emam Ali clinical research development unit for their assistance.

Availability of data and materials

Please contact corresponding author for data requests.

Funding

This study was funded and designed by Alborz University of Medical Sciences.

Author information

Affiliations

Authors

Contributions

MK, MH, SM, HSE, SD, SKS, AMG, MQ, AK design and data gathering, MQ, SD, MEA, SKS, AK design and revision, MQ, AK data analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Amir Kasaeian or Mostafa Qorbani.

Ethics declarations

Ethics approval and consent to participate

The Research and Ethics council of Alborz University of Medical Sciences approved the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Fig. 6
figure6

Graph quality assessment subgroup

Fig. 7
figure7

Graph population subgroup

Fig. 8
figure8

Graph cMetS subsets

Appendix 2

Fig. 9
figure9

Graph population subgroup

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khazdouz, M., Hasani, M., Mehranfar, S. et al. Validity of continuous metabolic syndrome score for predicting metabolic syndrome; a systematic review and meta-analysis. J Diabetes Metab Disord (2021). https://doi.org/10.1007/s40200-021-00771-w

Download citation

Keywords

  • Continuous metabolic syndrome score (cMetS)
  • Metabolic syndrome
  • Sensitivity