Skip to main content

Advertisement

Log in

Elevated serum sialic acids, a potent biomarker of alloxan-induced type 1 diabetes in dogs by ethanolic extract of Anogeissus leiocarpus

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

This study investigated serum sialic acids for a predictive and diagnostic biomarker of diabetes mellitus (DM) in dogs and its prognostic value with ethanolic extract of Anogeissus leiocarpus.

Design

Four groups of 3 dogs were used; non-diabetic controls (ND), diabetic-untreated (DU), diabetic insulin-treated (DI) and diabetic extract-treated (DE). Free serum sialic acids (FSSA) and erythrocyte surface sialic acids (ESSA) were assayed in all groups, pre-and post-induction of hyperglycaemia and results were presented as means ± standard error of means (SEM) and subjected to ANOVA using Tukey’s post-hoc tests with GraphPad Prism® statistical package.

Results

FSSA increased in DU and plateaued at third week (61.8 ± 0.41 μg/ml), (P < 0.002) with additional 38.2 μg/ml (62%) generated, coinciding with hyperglycaemia. FSSA of DI increased but declined to 22.3 ± 1.55 μg/ml. Extract of Anogeissus leiocarpus effectively modulated FSSA in DE as increased value declined to 21.4 ± 0.78 μg/ml. Pre-induction DU ESSA (8.27 ± 0.11 μg/ml) significantly (P < 0.002) decreased by third week (2.33 ± 1.49 μg/ml), coinciding with hyperglycaemia. Strong negative correlation coefficient (r = −0.92) occurred between DU’s FSSA and ESSA and ND (P < 0.03). Sialic acid expression in dog’s insulin dependent diabetes mellitus (IDDM) is 18% lower than normal. Extract of A. leiocarpus restored ESSA completely. ESSA cleaved in DU, 5.94 μg/ml (72%), could not account for the extra FSSA (32.26 μg/ml); liver and kidneys are contributors.

Conclusion

FSSA predicts canine DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization. Global report on diabetes. 1. Diabetes Mellitus–epidemiology. 2. Diabetes Mellitus – prevention and control. 3. Diabetes, Gestational. 4. Chronic Disease. 5. Public Health. I. World Health Organization. France 2016.

  2. World Health Organization (WHO). Global report on diabetes. Geneva, Switzerland 2018.

  3. International Diabetes Federation, IDF Diabetes Atlas. 8th ed. 2017.

  4. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Show JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

    CAS  PubMed  Google Scholar 

  5. Ihedioha JI, Enahoro G. Prevalence of diabetes mellitus and reference values for the fasting blood glucose levels of locally available breeds of dogs in Warri, Nigeria. Comp Clin Pathol. 2019;28:1107–12.

    Google Scholar 

  6. Marmett B, Nunes RB. Resistance and aerobic training in the treatment of type 2 diabetes mellitus. J Diabetes Metab Disord Control. 2017;4:00126.

    Google Scholar 

  7. Dadrass A, Salamat KM, Hamidi K, Azizbeigi K. Anti-inflammatory effects of vitamin D and resistance training in men with type 2 diabetes mellitus and vitamin D deficiency: a randomized, double-blinded, placebo-controlled clinical trial. J Diabetes Metab Disord. 2019;18(2):323–31.

    PubMed  PubMed Central  Google Scholar 

  8. Traving C, Schauer R. Structure, function and metabolism of sialic acids. Cell Mol Life Sci. 1998;54:1330–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schauer R. Achievements and challenges of sialic acid research. Glycoconj J. 2000;17:485–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kishore BK, Gejyo E, Arakawa M. Altered glycosylation and sialylation of serum proteins and lipid bound sialic acids in chronic renal failure. Postgrad Med. 1983;59:551–5.

    CAS  Google Scholar 

  11. Forte P, Copland M, Smith LM, Miline F, Sutherland J, Benjamin N. Basic nitric oxide synthesis in essential hypertension. Lacent. 1997;349(9055):837–42.

    CAS  Google Scholar 

  12. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.

    PubMed  Google Scholar 

  13. Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008;14(8):351–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Varki A. Essentials of glycobiology. 2nd ed. New York: Cold spring harbor laboratory press, cold spring harbor; 2009.

    Google Scholar 

  15. Shahid SM, Mahboob T. Correlation between frequent risks factors of diabetic nephropathy and serum sialic acid. Asian J Biochem. 2006;1(3):244–50.

    CAS  Google Scholar 

  16. Englyst NA, Crook MA, Lumb P, Stears AJ, Masding MG, Wootton SA, et al. Percentage of body fat and plasma glucose predict plasma sialic acid concentration in type 2 diabetes mellitus. Metab. 2006;55:1165–70.

    CAS  Google Scholar 

  17. El-Sayed MS, El Badawy A, Abdelmoneim RO, Mansour AE, Khalil ME, Darwish K. Relationship between serum sialic acid concentration and diabetic retinopathy in Egyptian patients with type 2 diabetes mellitus. Benha Med J. 2018;35:257–63.

    Google Scholar 

  18. Yarema K. The sialic acid pathway in human cells. Baltimore: John Hopkins University; 2006.

    Google Scholar 

  19. Prajna K, Ashok KJ, Srinidhi R, Shobith KS, Tirthal RS, Mohamedi B, et al. Predictive value of serum Sialic acid in Type-2 diabetes mellitus and its complication (nephropathy). J Clin Diagn Res. 2013;7(11):2435–7.

    CAS  Google Scholar 

  20. Vahalkar GS, Haldankar VA. RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem. 2008;23(3):223–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mazzanti L, Rabini RA, Salvolini E, Tesei M, Martarelli D, Venerando B, et al. Sialic acid, diabetes, and aging: a study on the erythrocyte membrane. Metab. 1997;46(1):59–61.

    CAS  Google Scholar 

  22. Moretti N, Rabini RA, Nanetti L, Grechi G, Gurzi MC, Cester N, et al. Sialic acid content in erythrocyte membranes from pregnant women affected by gestational diabetes. Met-Clin Exp. 2002;51(5):605–8.

    CAS  Google Scholar 

  23. Onoja US, Ugwu CC, Uzor PF, Nweze IE, Omeje EO, Nnamani PO, et al. Effect of Anogeissus leiocarpus guill and perr leaf on hyperglycaemia and associated dyslipidaemia in alloxan-induced diabetic rats. Dhaka Uni J Pharm Sci. 2018;17(1):65–72.

    CAS  Google Scholar 

  24. Motto EA, Lawson-Evi P, Kantati Y, Eklu-Gadegbeku K, Aklikokou K, Gbeassor M. Antihyperglycemic activity of total extract and fractions of Anogeissus leiocarpus. J Drug Deliv Ther. 2020;10(3):107–13.

    CAS  Google Scholar 

  25. Num SM, Oladele SB, Esievo KAN, Useh NM. Some observations in Wistar rats administered ethanol extracts of the stem barks of Anogeissus leiocarpus. Asian J Pharm Toxicol. 2014;2(03):4–10.

    Google Scholar 

  26. Evans WC. Trease and Evans’ pharmacognosy. 14th ed. Singapore: W.B. Saunders Co. Ltd; 1996. p. 119–59.

    Google Scholar 

  27. Trease K, Evans WC. Textbook of Pharmacognosy. 14th ed. London: Balliere, Tindall; 1996.

    Google Scholar 

  28. Harbone JB. Phytochemical methods: a guide to modern techniques for plant analysis. 3rd ed. London: Chapman and Hill; 1973. p. 279.

    Google Scholar 

  29. Bohm BA, Koupai-Abyazani R. Flavonoids and condensed tannins from leaves of Vaccinium raticulatum and Vaccinium calcymium (Ericaceae). Pac Sci. 1994;48:458–63.

    CAS  Google Scholar 

  30. Obadoni B, Ochuko PO. Phytochemical studies and comparative efficacy of the crude extract of some homeostatic plants in Edo, Delta states of Nigeria. Global J Pure Appl Sci. 2001;8:203–8.

    Google Scholar 

  31. Van-Burden TP, Robinson WC. Formation of complexes between protein and tannic acids. J Agric Food Chem. 1981;1:77.

    Google Scholar 

  32. Aluwong T, Ayo JO, Kpukple A, Oladipo OO. Amelioration of hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic wistar rats treated with probiotic and vitamin C. Nutrients. 2016;8(5):151.

    PubMed Central  Google Scholar 

  33. Dodge JT, Mitchell C, Hanahan DJ. The preparation and chemical characteristics of haemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963;100:119–30.

    CAS  PubMed  Google Scholar 

  34. Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959;234:1971–5.

    CAS  PubMed  Google Scholar 

  35. Aminoff D. Methods for the quantitative estimation of N-acetyneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J. 1961;81:384–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Izumida Y, Seiyama A, Maeda N. Erythrocyte aggregation: bridging by macromolecules and electrostatic repulsion by sialic acid. BBA – Biomembranes. 1991;1067:221–6.

    CAS  PubMed  Google Scholar 

  37. Poddar A, Ray S. Serum sialic acid levels in diabetic subjects: a promising screening tool for microvascular and macrovascular complications in diabetes. Int J Sci Res. 2015;4:2042–4.

    Google Scholar 

  38. Pradeepa R, Anjana RM, Unnikrishnan R, Ganesan A, Mohan V, Rema M. Risk factors for microvascular complications of diabetes among south Indian subjects with type 2 diabetes—the Chennai urban rural epidemiology study (CURES) eye Study-5. Diabetes Technol Therapeutics. 2010;12(10):755–61.

    CAS  Google Scholar 

  39. Subzwari MJ, Qureshi MA. Relationship between sialic acid and microvascular complications in type 2 diabetes mellitus. Proceeding SZPGMI. 2010;24(2):79–83.

    Google Scholar 

  40. Divija DA, Rajeshwari A, Nusrath A. Correlation of serum sialic acid with glycaemic status in diabetic retinopathy. Int J Bioassays. 2014;3:1789–93.

    Google Scholar 

  41. Kumar SP, Latha JM, Amarendra M, Benerji GV. A study of serum sialic acid in noninsulin dependent diabetes mellitus. Indian J Basic and Appl Med Res. 2015;4:612–9.

    CAS  Google Scholar 

  42. Ghosh J, Datta S, Pal M. Role of sialic acid in prediction of diabetic retinopathy. Al Ameen J Med Sci. 2016;9(1):58–64.

    CAS  Google Scholar 

  43. Rahman I, Malik AS, Bashir M, Khan R, Igbal M. Serum sialic acid changes in non-insulin dependent diabetes mellitus (NIDDM) patients following better melon (Momordica charantia) and rosiglitazone (Avanda) treatment. Phytomedicine. 2009;16:401–5.

    Google Scholar 

  44. Venerando B, Fiorilli A, Croci G, Tringali C, Goi G, Mazzanti L. Acidic and neutral sialidase in the erythrocyte membrane of type II diabetic patients. Blood. 2002;99:1064–70.

    CAS  PubMed  Google Scholar 

  45. Alghamdi F, Guo M, Abdulkhalek S, Crawford N, Amith SR, Szewezu MR. A novel insulin receptor-signaling platform and its link to insulin resistance and type of diabetes. Cell Signal. 2014;26(4):1355–68. https://doi.org/10.1016/j.cellsig.2014.02.015.

    Article  CAS  PubMed  Google Scholar 

  46. Nayak BS, Duncan H, Lalloo S, Maraj K, Matumungal V, Matthews F, et al. Correlation of microalbumin and sialic acid with anthropometric variables in type 2 diabetic patients with and without nephropathy. Vasc Health Risk Manag. 2008;4(1):243–7.

    CAS  Google Scholar 

  47. Khalili P, Sundstrom J, Jendle J, Lundin F, Jungner I, Nilsson PM. Sialic acid and incidence of hospitalization for diabetes and its complications during 40 years of follow-up in a large cohort: the Varmland survey. Prim Care Diabetes. 2014;8(4):352–7.

    PubMed  Google Scholar 

  48. Ibrahim MA, Abdulkadir A, Onajah A, Sani L, Adamu A, Abdulahi H. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemias. Mol Cell Biochem. 2015;411:235–9. https://doi.org/10.1007/s11010-015-2585-x.

    Article  CAS  PubMed  Google Scholar 

  49. Gokmen SS, Klicli G, Ozcelik F, Ture M, Gulen S. Association between serum total and lipid-bound sialic acid concentration and the severity of coronary atherosclerosis. J Lab Clin Med. 2002;140(2):110–8.

    CAS  PubMed  Google Scholar 

  50. Sabzwari MJ, Ahmad M, Majeed MT, Riaz M, Umair M. Serum sailic acid concentration and type 2 diabetes mellitus. Professional Med J. 2006;13(4):508–10.

    Google Scholar 

  51. Esievo KAN. Veterinary clinical pathology, vol. 37. 1st ed. Ibadan: Spectrum Books; 2017. p. 110–1.

    Google Scholar 

  52. Akah PA, Alemji JA, Salawu OA, Okoye TC, Offiah NV. Effects of Vernonia amygdalina on biochemical and haematological parameters in diabetic rats. Asian J Med Sci. 2009;1(3):108–13.

    Google Scholar 

  53. Hillson R. Diabetes and the blood red cells. Pract Diabetes. 2015;32:124–6.

    Google Scholar 

  54. Yaari A. Mobility of human red blood cells of different age groups in an electric field. Blood. 1969;33:159–63.

    CAS  PubMed  Google Scholar 

  55. Greenwalt TJ, Steane EA. Quantitative haemagglutination. IV. Effect of neuraminidase treatment on agglutination of blood group antibodies. Br J Haematol. 1973;25:207–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Faculty of Veterinary Medicine Post Graduate Committee, Ahmadu Bello University and Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University and Ahmadu Bello University Teaching Hospital Shika.

Funding

This study was partly funded by Tertiary Education Trust Fund (TETFUND) of Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King Akpofure Nelson Esievo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. This article contains studies with animal subjects performed by the authors and ethical approval for this study was provided by Ahmadu Bello University Committee on Animal Use and Care (ABUCAUC) (Ethical clearance No ABUCAC/2019/16).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esievo, K.A.N., Num-Adom, S.M., Adamu, S. et al. Elevated serum sialic acids, a potent biomarker of alloxan-induced type 1 diabetes in dogs by ethanolic extract of Anogeissus leiocarpus. J Diabetes Metab Disord 20, 179–186 (2021). https://doi.org/10.1007/s40200-021-00726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00726-1

Keywords

Navigation