Skip to main content
Log in

Four weeks exercise training enhanced the hepatic insulin sensitivity in high fat- and high carbohydrate-diet fed hyperinsulinemic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Aim

Hyperinsulinemia is considered the primary defect underlying the development of type 2 diabetes. The liver is essential for the regular glucose homeostasis. In this study, we examined the effect of physical training on the insulin signaling, oxidative stress enzymes and Glucose-6-phosphatase(G6Pase) activity in the liver of Wistar rats.

Methods

Adult male Wistar rats were divided into Control diet group(C), High carbohydrate diet(HCD), High fat diet(HFD), HCD and HFD with training(HCD Ex & HFD Ex). HFD Ex and HCD Ex were trained on a small animal treadmill running at 20 m/min for 30 min, 5 days/wk. The present work investigated the effect of training on hepatic insulin receptor(InsR) signaling events, oxidative stress marker expressions and G6Pase activity in hyperinsulinemic rats.

Results

High carbohydrate and fat feeding led to hyperinsulinemic status with increased hepatic G6Pase activity and impaired phosphorylation of insulin receptor substrate 1(IRS1) and reduced expression of antioxidant enzymes.Training significantly reduced hepatic G6Pase activity, upregulated phosphoinositide 3 kinase(PI3K) docking site phosphorylation and downregulated the negative IRS1 phosphorylations thereby increasing the glucose transporter(GLUT) expressions (aa(P < 0.001) when compared to HFD, b(P < 0.01),bb (P < 0.001 when compared to HCD). Anti oxidant enzymes like CAT, SOD, eNOS expression were increased with reduction in the expression of inflammatory enzymes like TNF-α and COX-2 (*(P < 0.05),**(P < 0.01),***(P < 0.001) when compared to control, †(P < 0.05),††(P < 0.01),†††(P < 0.001) when compared to HFD and HCD).

Conclusion

Thus, our study shows that four weeks training enhanced the hepatic insulin sensitivity in high fat and high carbohydrate-diet fed hyperinsulinemic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.

    CAS  PubMed  Google Scholar 

  2. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.

    PubMed  Google Scholar 

  3. Venkatasamy VV, Pericherla S, Manthuruthil S, Mishra S, Hanno R. Effect of physical activity on insulin resistance, inflammation and oxidative stress in diabetes mellitus. J Clin Diagn Res. 2013;7(8):1764–6.

    PubMed  PubMed Central  Google Scholar 

  4. Rutter GA. Diabetes: the importance of the liver. Curr Biol. 2000;10(20):R736-8.

    PubMed  Google Scholar 

  5. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gregory JM, Muldowney JA, Engelhardt BG, et al. Aerobic exercise training improves hepatic and muscle insulin sensitivity, but reduces splanchnic glucose uptake in obese humans with type 2 diabetes. Nutr Diabetes. 2019;9(1):25.

    PubMed  PubMed Central  Google Scholar 

  7. Suk M, Shin YJ. Effect of high-intensity exercise and high-fat diet on lipid metabolism in the liver of rats. Exerc Nutrition Biochem. 2015;19(4):289–95.

    Google Scholar 

  8. Valverde AM, González-Rodríguez A. IRS2 and PTP1B: Two opposite modulators of hepatic insulin signalling. Arch Physiol Biochem. 2011;117(3):105–15.

    CAS  PubMed  Google Scholar 

  9. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22.

    PubMed  PubMed Central  Google Scholar 

  10. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40(5):257–62.

    PubMed  PubMed Central  Google Scholar 

  11. O’Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996;76(4):1109–61.

    PubMed  Google Scholar 

  12. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6(1):87–97.

    CAS  PubMed  Google Scholar 

  13. Choukem SP, Gautier JF. How to measure hepatic insulin resistance? Diabetes Metab. 2008;34:664–73.

    CAS  PubMed  Google Scholar 

  14. Edgerton DS, Cardin S, Pan C, Neal D, Farmer B, Converse M, Cherrington AD. Effects of insulin deficiency or excess on hepatic gluconeogenic flux during glycogenolytic inhibition in the conscious dog. Diabetes. 2002;51(11):3151–62.

    CAS  PubMed  Google Scholar 

  15. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes. 2006;55(8):2392–7.

    CAS  PubMed  Google Scholar 

  16. Saeidi A, Hackney C, Tayebi A, Ahmadian SM, Zouhal M, Diabetes H. Insulin resistance, fetuin-B and exercise training. Ann Appl Sport Sci. 2019;7(2):1–2.

    PubMed  PubMed Central  Google Scholar 

  17. Haus JM, et al. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. J Clin Endocrinol Metab. 2010;95:323–7.

    CAS  PubMed  Google Scholar 

  18. Joseph A, Parvathy S, Varma KK. Altered insulin signaling and lactate dehydrogenase activity in the heart of hyperinsulinemic rats: effect of exercise. Metabolism. 2020;104S:154091.

    Google Scholar 

  19. Wallert MA, Fosterb JD, Scholnick DA, Olmschenk SM, Kuehna BJ, Provost JJ. Kinetic analysis of glucose-6-phosphatase: an investigative approach to carbohydrate metabolism and kinetics. Biochem Mol Biol Educ. 2001;29:199–203.

    CAS  Google Scholar 

  20. Vijayan A, Varma KK, Malattiri R. Plasma insulin and insulin resistance in diabetes mellitus type 2. Gen Med (Los Angel). 2014;3:152.

    Google Scholar 

  21. Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–67.

    PubMed  PubMed Central  Google Scholar 

  22. Saad MJ, Araki E, Miralpeix M, Rothenberg PL, White MF, Kahn CR. Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest. 1992;90(5):1839–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lucchesi AN, Freitas NT, Cassettari LL, Marques SF, Spadella CT. Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cir Bras. 2013;28(7):502–8.

    PubMed  Google Scholar 

  24. Bedi O, Aggarwal S, Trehanpati N, Ramakrishna G, Krishan P. Molecular and pathological events involved in the pathogenesis of diabetes-associated nonalcoholic fatty liver disease. J Clin Exp Hepatol. 2019;9(5):607–18.

    PubMed  Google Scholar 

  25. Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Med. 2008;44:1973–2001.

    CAS  Google Scholar 

  26. Botezelli JD, Cambri LT, Ghezzi AC, Dalia RA, Voltarelli FA, de Mello MA. Fructose-rich diet leads to reduced aerobic capacity and to liver injury in rats. Lipids Health Dis. 2012;11:78.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McNaughton L, Puttagunta L, Martinez-Cuesta MA, et al. Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci U S A. 2002;99(26):17161–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tateya S, Rizzo NO, Handa P, Cheng AM, Morgan-Stevenson V, Daum G, Clowes AW, Morton GJ, Schwartz MW, Kim F. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes. 2011 ;60(11):2792–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martín-Sanz P, Casado M, Boscá L. Cyclooxygenase 2 in liver dysfunction and carcinogenesis: Facts and perspectives. World J Gastroenterol. 2017;23(20):3572–80.

    PubMed  PubMed Central  Google Scholar 

  30. Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Radic Res. 2017;51(2):222–36.

    CAS  PubMed  Google Scholar 

  31. Hoene M, Lehmann R, Hennige AM, Pohl AK, Häring HU, Schleicher ED, Weigert C. Acute regulation of metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmill exercise. J Physiol. 2009;587:241–52.

    CAS  PubMed  Google Scholar 

  32. Ropelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC, et al. Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol. 2006;577:997–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schultz A, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA. Swimming training beneficial effects in a mice model of nonalcoholic fatty liver disease. Exp Toxicol Pathol. 2012;64(4):273–82.

    CAS  PubMed  Google Scholar 

  34. Marques CMM, Motta VF, Torres TS, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of exercise training (treadmill) on insulin resistance and nonalcoholic fatty liver disease in high-fat fed C57BL/6 mice. BJMBR. 2010;43(5):467–75.

    CAS  Google Scholar 

  35. Zheng F, Cai Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis. 2019;18(1):6.

    PubMed  PubMed Central  Google Scholar 

  36. Marcinko K, Sikkema SR, Samaan MC, Kemp BE, Fullerton MD. Steinberg GR High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol Metab. 2015;4(12):903–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Eckstein SS, Weigert C, Lehmann R. Divergent roles of IRS (Insulin Receptor Substrate) 1 and 2 in liver and skeletal muscle. Curr Med Chem. 2017;24(17):1827–52.

    CAS  PubMed  Google Scholar 

  38. Titchenell PM, Chu Q, Monks BR, Birnbaum MJ. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat Commun. 2015;6:7078.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Argaud D, Zhang Q, Pan W, Maitra S, Pilkis SJ, Lange AJ. Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5’-flanking sequence. Diabetes. 1996;45(11):1563–71.

    CAS  PubMed  Google Scholar 

  40. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177–97.

    PubMed  PubMed Central  Google Scholar 

  41. Amy K, Rines K, Sharabi CDJ, Tavares, Puigserver P. Targeting hepatic glucose output in the treatment of type 2 diabetes. Nat Rev Drug Discov. 2016;15(11):786–804.

    Google Scholar 

  42. Ziv E, Kalman R, Hershkop K, Barash V, Shafrir E, Bar-On H. Insulin resistance in the NIDDM model Psammomys obesus in the normoglycaemic, normoinsulinemic state. Diabetologia. 1996;39(11):1269–75.

    CAS  PubMed  Google Scholar 

  43. Knudsen JG, Bienso RS, Hassing HA, Jakobsen AH, Pilegaard H. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver. Mol Cell Biochem. 2015;403:209–17.

    CAS  PubMed  Google Scholar 

  44. Sheldon RD, Laughlin MH, Rector RS. Reduced hepatic eNOS phosphorylation is associated with NAFLD and type 2 diabetes progression and is prevented by daily exercise in hyperphagic OLETF rats. J Appl Physiol (1985). 2014;116(9):1156-64.

  45. Kawanishi N, Yano H, Mizokami T, Takahashi M, Oyanagi E, Suzuki K. Exercise training attenuates hepatic inflammation, fibrosis and macrophage infiltration during diet induced-obesity in mice. Brain Behav Immun. 2012;26(6):931–41.

    PubMed  Google Scholar 

  46. Farzanegi P, Dana A, Ebrahimpoor Z, Asadi M, Azarbayjani MA. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur J Sport Sci. 2019;19(7):994–1003.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr Sreerenj and faculties of Department of Health Sciences, University of Calicut for allowing the use of department facilities. We also thank the MIMSRF Lab manager Mr Varun and assistant Mrs Mahishiya for their timely help.

Funding

This work is supported by funding from DST SERB, Govt. of India (ECR/2015/000158) and MIMS Research Foundation, Calicut, Kerala.

Author information

Authors and Affiliations

Authors

Contributions

AJ: Conceptualization, Methodology, Writing- Reviewing and Editing, PS.: Methodology, Investigation, Validation Writing – Original Draft, KKV: Supervision, Writing – Review & Editing. AN- Standardisation All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Anu Joseph.

Ethics declarations

Ethics approval and consent to participate

All animal care and procedures were in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals by the Committee for the Purpose of Control And Supervision of Experiments on Animals (CPCSEA), Govt. Of India and was approved by MIMS Research Foundation Ethics Committee.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 27.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, A., Parvathy, S., Varma, K.K. et al. Four weeks exercise training enhanced the hepatic insulin sensitivity in high fat- and high carbohydrate-diet fed hyperinsulinemic rats. J Diabetes Metab Disord 19, 1583–1592 (2020). https://doi.org/10.1007/s40200-020-00694-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00694-y

Keywords

Navigation