Crocin attenuates oxidative stress and inflammation in myocardial infarction induced by isoprenaline via PPARγ activation in diabetic rats

Abstract

Background and purpose

Hyperglycemia induced oxidative stress and inflammation lead to development of diabetic cardiomyopathy. Diabetic patients are more at risk for myocardial infarction than non-diabetics. The current study has investigated the involvement of PPARγ activation in effects of crocin as a natural carotenoid against cardiac infarction in diabetic rats.

Materials and methods

Diabetes was induced in male Wistar rats by streptozotocin injection (55 mg/kg, i.p) 15 min after the administration of nicotinamide (110 mg/kg). Then saline, crocin (40 mg/kg, orally) and GW9662 (1 mg/kg, as PPARγ antagonist) were injected for 4 weeks. Isoprenaline was administrated on the 27th and 28th days to induce infarction. Cardiac injury markers, antioxidant enzymes content, blood glucose level, lipid profile, pro and anti-inflammatory cytokines, and PPARγ gene expression were measured.

Results

GSH, CAT content, CK-MB isoenzyme, LDH level, IL-10 and PPARγ gene expression in myocardial tissue were decreased in diabetic rats receiving isoprenaline and inflammatory cytokines TNFα and IL-6 and also plasma lipids were increased. Crocin administration significantly ameliorated inflammatory cytokines levels, CK-MB, and LDH contents and also it could enhance antioxidant capacity and PPARγ expression. However, GW9662 administration reversed the effects of crocin.

Conclusion

Overexpression of PPARγ in crocin treated rats and inhibition of crocin effects by GW9662 reflected the potential involvement of PPARγ pathway in the protective effects of crocin.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Mehta V, Verma P, Sharma N, Sharma A, Thakur A, Malairaman U. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: A comparative in-vitro study. B-FOPCU. 2017;55:115–21.

    Google Scholar 

  2. 2.

    Saklani R, Gupta SK, Mohanty IR, Kumar B, Srivastava S, Mathur R. Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem. 2016;420:65–72.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Korkmaz-Icoz S, Lehner A, Li S, Vater A, Radovits T, Hegedus T, et al. Mild type 2 diabetes mellitus reduces the susceptibility of the heart to ischemia/reperfusion injury: identification of underlying gene expression changes. J Diabetes Res. 2015:396–414.

  4. 4.

    Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213–23.

    PubMed  Article  Google Scholar 

  5. 5.

    Wang R, Xi L, Kukreja RC. PDE5 inhibitor tadalafil and hydroxychloroquine cotreatment provides synergistic protection against type 2 diabetes and myocardial infarction in mice. J Pharmacol Exp Ther. 2017;361:29–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Kumar J, Menon V. Changes in levels of lipid peroxides and activity of superoxide dismutase and catalase in diabetes associated with myocardial infarction. J Exp Biol. 1992;30:122–7.

    Google Scholar 

  7. 7.

    Zaafan MA, Zaki HF, El-Brairy AI, Kenawy SA. Protective effects of atorvastatin and quercetin on isoprenaline-induced myocardial infarction in rats. B-FOPCU. 2013;51:35–41.

    Google Scholar 

  8. 8.

    Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. BBA-Mol Basis Dis. 1852;2015:232–42.

    Google Scholar 

  9. 9.

    Nakamura T, Nishi H, Kokusenya Y, Hirota K, Miura Y. Mechanism of antioxidative activity of fluvastatin-determination of the active position. Chem Pharm Bull. 2000;48:235–7.

    CAS  Article  Google Scholar 

  10. 10.

    Hazman O, Aksoy L, Buyukben A. Effects of crocin on experimental obesity and type-2 diabetes. Turk J Med Sci. 2016;46:1593–602.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Goyal S, Arora S, Sharma A, Joshi S, Ray R, Bhatia J, et al. Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine. 2010;17:227–32.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Dianat M, Esmaeilizadeh M, Badavi M, Samarbaf-zadeh AR, Naghizadeh B. Protective effects of crocin on ischemia-reperfusion induced oxidative stress in comparison with vitamin E in isolated rat hearts. Jundishapur J Nat Parm Prod. 2014;9:e17187.

    Google Scholar 

  13. 13.

    Batarseh YS, Bharate SS, Kumar V, Kumar A, Vishwakarma RA, Bharate SB, et al. Crocus sativus extract tighten the blood-brain barrier, reduces amyloid-β load and related toxicity in 5XFAD mice. ACS Chem Neurosci. 2017;168:1756–66.

    Article  CAS  Google Scholar 

  14. 14.

    Lee IA, Lee JH, Baek NI, Kim DH. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull. 2005;28:2106–10.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Asdaq SMB, Inamdar MN. Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Appl Biochem Biotechnol. 2010;162:358–72.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Kianbakht S, Hajiaghaee R. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. J Med Plants. 2011;3:82–9.

    Google Scholar 

  17. 17.

    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem. 1995;270:12953–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh W, et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and-independent pathways. J Biol Chem. 2006;281:8748–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Hasegawa T, Okada K, Okita Y, Pinsky DJ. Antioxidant properties of pioglitazone limit nicotinamide adenine dinucleotide phosphate hydrogen oxidase and augment superoxide dismutase activity in cardiac allotransplantation. J Heart Lung Transplant. 2011;301:186–96.

    Google Scholar 

  20. 20.

    Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Pharm Adv Res. 2011;2:236.

    CAS  Article  Google Scholar 

  21. 21.

    Lim S, Lee KS, Lee JE, Park HS, Kim KM, Moon JH, et al. Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis. 2015;243:107–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Jadhav J, Puchchakayala G. Hypoglycemic and antidiabetic activity of flavonoids: boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Int J Pharm Sci Res. 2012;4:251–6.

    CAS  Google Scholar 

  23. 23.

    De Oliveira LS, Thomé GR, Lopes TF, Reichert KP, De Oliveira JS, Da Silva PA, et al. Effects of gallic acid on delta–aminolevulinic dehydratase activity and in the biochemical, histological and oxidative stress parameters in the liver and kidney of diabetic rats. Biomed Pharmacother. 2016;84:1291–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. 24.

    Loh LK, Sahoo KC, Kishore K, Ray R, Nag TC, Kumari S, et al. Effects of thalidomide on isoprenaline-induced acute myocardial injury: a haemodynamic, histopathological and ultrastructural study. Basic Clin Pharmacol Toxicol. 2007;100:233–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Ravichandran L, Puvanakrishnan R, Joseph K. Alterations in the heart lysosomal stability in isoproterenol induced myocardial infarction in rats. Int J Biochem Res. 1990;22:387–96.

    CAS  Google Scholar 

  26. 26.

    Mohanty I, Arya DS, Dinda A, Talwar AA, Joshi S, Gupta SK. Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic Clin Pharmacol Toxicol. 2004;94:184–90.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Freedman DS, Gruchow HW, Anderson AJ, Rimm AA, Barboriak JJ. Relation of triglyceride levels to coronary artery disease: the Milwaukee cardiovascular data registry. Am J Epidemiol. 1988;127:1118–30.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Agrawal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS One. 2014;9:e111212.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, et al. Challenges and issues with streptozotocin-induced diabetes–a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49–63.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Javandoost A, Afshari A, Nikbakht-Jam I, Khademi M, Eslami S, Nosrati M, et al. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: a double blind randomized clinical trial. ARYA Atheroscler. 2017;13(5):245.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Shirali S, Bathaie SZ. And M. Nakhjavani. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother Res. 2013;27(7):1042–7.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Mahajan UB, Chandrayan G, Patil CR, Arya DS, Suchal K, Agrawal YO. The protective effect of Apigenin on myocardial injury in diabetic rats mediating activation of the PPAR-γ pathway. Int J Mol Sci. 2017;18:756.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  34. 34.

    Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci. 2017;61:581–9.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K. Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Interact. 2013;203(3):547–55.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Bahashwan S, Hassan MH, Aly H, Ghobara MM, El-Beshbishy H, Busati I. Crocin mitigates carbon tetrachloride-induced liver toxicity in rats. J Taibah Univ Sci. 2015;10(2):140–9.

    Google Scholar 

  37. 37.

    Altinoz E, Oner Z, Elbe H, Cigremis Y, Turkoz Y. Protective effects of saffron (its active constituent, crocin) on nephropathy in streptozotocin-induced diabetic rats. Hum ExpToxicol. 2015;34:127–34.

    CAS  Article  Google Scholar 

  38. 38.

    Wang Y, Qi X, Wang C, Zhao D, Wang H, Zhang J. Effects of propofol on myocardial ischemia-reperfusion injury in rats with type-2 diabetes mellitus. Biomed Rep. 2017;6:69–74.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Han J, Wang D, Ye L, Li P, Hao W, Chen X, et al. Rosmarinic acid protects against inflammation and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury by activating peroxisome proliferator-activated receptor gamma. Front Pharmacol. 2017;8:456.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Wang H, Zhu Q, Ye P, Li Z, Li Y, Cao Z, et al. Pioglitazone attenuates myocardial ischemia-reperfusion injury via up-regulation of ERK and COX-2. Biosci Trends. 2012;6:325–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rani N, Bharti S, Bhatia J, Nag T, Ray R, Arya DS. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem Biol Interact. 2016;250:59–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Zhang Y, Zhan RX, Chen JQ, Gao Y, Chen L, Kong Y, et al. Pharmacological activation of PPAR gamma ameliorates vascular endothelial insulin resistance via a non-canonical PPAR gamma-dependent nuclear factor-kappa B trans-repression pathway. Eur J Pharmacol. 2015;754:41–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Corrales P, Vidal-Puig A, Medina-Gómez G. PPARs and metabolic disorders associated with challenged adipose tissue plasticity. Int J Mol Sci. 2018;19(7):2124.

    PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Peng S, Xu J, Ruan W, Li S, Xiao F. PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell. 2017;2017. https://doi.org/10.1155/2017/8326749.

  45. 45.

    Liu HJ, Liao HH, Yang Z, Tang QZ. Peroxisome proliferator-activated receptor-γ is critical to cardiac fibrosis. PPAR Res. 2016;2016:1–12.

    Google Scholar 

  46. 46.

    Algandaby MM. Crocin prevents metabolic syndrome in rats via enhancing PPAR-gamma and AMPK. Saudi J Biol Sci. 2020;27:1310–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Behrouz V, Dastkhosh A, Hedayati M, Sedaghat M, Sharafkhah M, Sohrab G. The effect of Crocin supplementation on glycemic control, insulin resistance and active AMPK levels in patients with type 2 diabetes. Diabetol Metab Syndr. 2020;12:59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Elsherbiny NM, Salama FM, Said E, El-Sherbiny M, Al-Gayyar MM. Crocin protects against doxorubicin-induced myocardial toxicity in rats through down-regulation of inflammatory and apoptic pathways. Chem Biol Interact. 2016;24:39–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was a part of thesis of Neda Dashtbozorgi, a PhD student of Jundishapur University of Medical Sciences. We would like to thanks Research affair of Ahvaz Jundishapur University of Medical Sciences for financial support.

Funding

This study was supported by funds received from the Physiology Research Center of Ahvaz Jundishapur University of Medical Sciences (Grant No. APRC-9702).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neda Dashtbozorgi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badavi, M., Mard, S.A., Dianat, M. et al. Crocin attenuates oxidative stress and inflammation in myocardial infarction induced by isoprenaline via PPARγ activation in diabetic rats. J Diabetes Metab Disord (2020). https://doi.org/10.1007/s40200-020-00686-y

Download citation

Keywords

  • Crocin
  • Myocardial infarction
  • Inflammation
  • PPARγ
  • Rat