Skip to main content

Advertisement

Log in

Benfotiamine reduced collagen IV contents of sciatic nerve in hyperglycemic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Neuropathy as a common complication of hyperglycemia in diabetic patients is probably caused by metabolic and structural changes in extracellular matrix (ECM) of peripheral nerves. This study was designed to evaluate the effects of benfotiamine (BT) on the structural, biological and mechanical characteristics of rat sciatic nerve in hyperglycemic condition.

Materials and methods

Forty eight adult male Wistar rats were assigned to 6 groups (n = 8): control (healthy rats with no treatment; C), positive control (healthy rats received BT treatment; B), negative control groups 1&2 (hyperglycemic rats kept for 4 and/or 8 weeks; 4WD and 8WD, respectively) and experimental groups 1&2 (hyperglycemic rats treated by daily oral gavage of 100 mg kg− 1 body weight BT for 4 and/or 8 weeks; 4WD + BT and 8WD + BT, respectively). Hyperglycemia was induced by a single intraperitoneal injection of of streptozotocin (55 mg kg− 1 body weight). After a period of experimental period (4 and/or 8 weeks) rats were sacrificed and from each two segments (1 cm length) of left sciatic nerve were sampled. These samples were prepared for histological examinations (light and electron microscopy), collagen IV immunohistochemistry and strength tensile test.

Results

In comparison to control groups, in 4WD and 8WD groups the amount of type IV collagen was increased, the structure of myelin sheath and nerve fibers were extensively altered and the tensile strength was significantly decreased (p < 0.05) while in 4WD + BT and 8WD + BT groups these abnormalities were attenuated.

Conclusions

It seems that BT treatment may rescue the sciatic nerve from the hyperglycemic-induced ECM structural abnormality. This beneficial advantage of BT is likely exerted through the modification of glucose metabolism pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rassouli MB, Ghayour MB, Ghayour N. Microvascular complications of diabetes. J Biol Sci. 2010;10:411–23.

    Google Scholar 

  2. Diabéticas Periféricas N, et al. Diabetic peripheral neuropathies: a morphometric overview. Int J Morphol. 2010;28(1):51–64.

    Google Scholar 

  3. Vinik AI, Nevoret M, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013;42(4):747-87 (Elsevier Inc).

  4. Bruschi LKM, et al. Diabetes mellitus and diabetic peripheral neuropathy. Open J Endocr Metab Dis. 2017;07(01):12–21.

    CAS  Google Scholar 

  5. Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig. 2011;2(1):18–32.

    CAS  PubMed  Google Scholar 

  6. Power SE, et al. The potential role of thiamine (vitamin B1) in diabetic complications. ” Nutr J. 2013;12(3):148.

    Google Scholar 

  7. Kawano T. A current overview of diabetic neuropathy – mechanisms, symptoms, diagnosis, and treatment. Peripher Neuropathy. 2014:89–105.

  8. Luo X, Wu J, Jing S, Yan L-J. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016;7(1):90.

    PubMed  PubMed Central  Google Scholar 

  9. Sadowska-Bartosz I, Bartosz G. Prevention of protein glycation by natural compounds. Molecules. 2015;20(2):3309–34.

    PubMed  PubMed Central  Google Scholar 

  10. Schalkwijk CG, Stehouwer CDA, van Hinsbergh VWM. Fructose-mediated non-enzymatic glycation: Sweet coupling or bad modification. Diabetes Metab Res Rev. 2004;20(5):369–82.

    CAS  PubMed  Google Scholar 

  11. Duran-jimenez B, et al. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Sens Neur. 2009;58(December):2893–903.

    CAS  Google Scholar 

  12. Oztürk G, Sekeroğlu MR, Erdoğan E, Oztürk M. The effect of non-enzymatic glycation of extracellular matrix proteins on axonal regeneration in vitro. ” Acta Neuropathol. 2006;112(5):627–32.

    PubMed  Google Scholar 

  13. Tan KCB, et al. Advanced glycation end products and diabetic complications: a general overview. Hormones (Athens). 2005;4(1):28–37.

    Google Scholar 

  14. Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts. 2016;7(5–6):293–299.

    CAS  PubMed  Google Scholar 

  15. Hill RE, Williams PE. A quantitative analysis of perineurial cell basement membrane collagen IV, laminin and fibronectin in diabetic and non-diabetic human sural nerve. J Anat. 2002;201(2):185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Luong. The impact of thiamine treatment in the diabetes mellitus. J Clin Med Res. 2012;4(3):153–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Greb A, Bitsch R. Comparative bioavailability of various thiamine derivatives after oral administration. Int J Clin Pharmacol Ther. 1998;36(4):216–21.

    CAS  PubMed  Google Scholar 

  18. Brownlee M. Lilly lecture 1993: Glycation and diabetic complications. Diabetes. 1994;43(6):836–41.

    CAS  PubMed  Google Scholar 

  19. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): Results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008;116(10):600–5.

    CAS  PubMed  Google Scholar 

  20. Alam SS. Effect of high dose thiamine therapy on risk factors in type 2 diabetics. J Diabetes Metab. 2012;03(10).

  21. Varadi G, Zhu Z, Carter SG. Efficient transdermal delivery of benfotiamine in an animal model. Admet Dmpk. 2015;2(4):272–81.

    Google Scholar 

  22. Karamoysoyli E, Burnand RC, Tomlinson DR, Gardiner NJ. Neuritin mediates nerve growth factor – induced axonal. Diabetes. 2008;57(January):181–9.

    CAS  PubMed  Google Scholar 

  23. Volvert ML, et al. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 2008;8:1–11.

    Google Scholar 

  24. Mohammadi R, Saadati A. Influence of insulin-like growth factor I on nerve regeneration using allografts: A scia[1] R. Mohammadi, Saadati A, ‘Influence of insulin-like growth factor I on nerve regeneration using allografts: A sciatic nerve model’, J. Craniofac. Surg., vol. 2. J Craniofac Surg. 2014;25(4):1510–4.

    PubMed  Google Scholar 

  25. Kumar GL, Kiernan J. Special stains and H & E Second Edition Education Guide | Special Stains and H & E. Dako North Am Carpint Calif, p. 158, 2010.

  26. Aldaghi MR, Jalali M, Nikravesh MR, Fazel A. Research opinions in animal & veterinary sciences effect of α -lipoic acid on expression of collagen IV of the sciatic nerve of diabetic rats, pp. 576–582, 2008.

  27. Tennakoon JB. Methods in molecular biology, no. November 2013. 2014.

  28. Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res. 1998;795:1–2.

    Google Scholar 

  29. Borschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.

    PubMed  Google Scholar 

  30. Exposito JY, Valcourt U, Cluzel C, Lethias C. The fibrillar collagen family. Int J Mol Sci. 2010;11(2):407–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Laurie GW, Leblond CP, Martin GR. Localization of type IV collagen, laminin, heparin sulphate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol. 1984;26(October):107–16.

    Google Scholar 

  32. Eble JA, Golbik R, Mann K, Kühn K. The alpha 1 beta 1 integrin recognition site of the basement membrane collagen molecule [alpha 1(IV)]2 alpha 2(IV). EMBO J. 1993;12(12):4795–802.

    CAS  PubMed  Google Scholar 

  33. Fox JW, et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. ” EMBO J. 1991;10(11):3137–46.

    CAS  PubMed  Google Scholar 

  34. King RHM, Llewelyn JG, Thomas PK, Gilbey SG, Watkins PJ. Diabetic neuropathy: abnormalities of schwann cell and perineurial basal laminae. implications for diabetic vasculopathy. Neuropathol Appl Neurobiol. 1989;15(4):339–55.

    CAS  PubMed  Google Scholar 

  35. Johnson PC, Doll SC. Dermal nerves in human diabetic subjects. Diabetes. 1984;33(3):244–50.

    CAS  PubMed  Google Scholar 

  36. Johnson PC. Thickening of the human dorsal root ganglion perineural cell basement membrane in diabetis mellitus. Muscle Nerve. 1983;6(October):561–5.

    CAS  PubMed  Google Scholar 

  37. Bradley JL, King RH, Muddle JR, Thomas PK. The extracellular matrix of peripheral nerve in diabetic polyneuropathy. ” Acta Neuropathol. 2000;99(5):539–46.

    CAS  PubMed  Google Scholar 

  38. Ma ST, Liu DL, Deng JJ, Peng YJ. Protective effect of mulberry flavonoids on sciatic nerve in alloxan–induced diabetic rats. Braz J Pharm Sci. 2014;50(4):765–72.

    CAS  Google Scholar 

  39. Gao S, et al. Comparison of morphology and biocompatibility of acellular nerve scaffolds processed by different chemical methods. J Mater Sci Mater Med. 2014;25(5):1283–91.

    CAS  PubMed  Google Scholar 

  40. Žilić L. Development of acellular porcine peripheral nerves, no. October, 2016.

  41. Luo ZJ, King RHM, Lewin J, Thomas PK. Effects of nonenzymatic glycosylation of extracellular matrix components on cell survival and sensory neurite extension in cell culture. J Neurol. 2002;249(4):424–31.

    CAS  PubMed  Google Scholar 

  42. Berrone E, Beltramo E, Solimine C, Ape AU, Porta M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem. 2006;281(14):9307–13.

    CAS  PubMed  Google Scholar 

  43. Beltramo E, Berrone E, Tarallo S, Porta M. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol. 2008;45(3):131–41.

    CAS  PubMed  Google Scholar 

  44. Jamali R, Mohseni S. Differential neuropathies in hyperglycemic and hypoglycemic diabetic rats. J Neuropathol Exp Neurol. 2006;65(12):1118–25.

    CAS  PubMed  Google Scholar 

  45. Behse F, Buchthal F. Nerve biopsy and conduction studies in diabetic neuropathy. pp. 1072–1082, 1977.

  46. Chalothorn D, et al. Differential cardiovascular regulatory activities of the alpha1B- and alpha1D-adrenoceptor subtypes. J Pharmacol Exp Ther. 2003;305(3):1045–53.

    CAS  PubMed  Google Scholar 

  47. Goh S-Y, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93(4):1143–52.

    CAS  PubMed  Google Scholar 

  48. Hill RE, Williams PE. Perineurial cell basement membrane thickening and myelinated nerve fibre loss in diabetic and nondiabetic peripheral nerve. J Neurol Sci. 2004;217(2):157–63.

    PubMed  Google Scholar 

  49. Layton BE, et al. Differences between collagen morphologies, properties and distribution in diabetic and normal biobreeding and Sprague-Dawley rat sciatic nerves. J Biomech. 2004;37(6):879–88.

    CAS  PubMed  Google Scholar 

  50. Terai N, Spoerl E, Haustein M, Hornykewycz K, Haentzschel J, Pillunat LE. 10.1159/000331990. Ophthalmic Res. 2012;47(4):189–94.

    PubMed  Google Scholar 

  51. Ishibashi F, Taniguchi M, Kojima R, Kawasaki A, Kosaka A, Uetake H. Elasticity of the tibial nerve assessed by sonoelastography was reduced before the development of neuropathy and further deterioration associated with the severity of neuropathy in patients with type 2 diabetes. J Diabetes Investig. 2016;7(3):404–12.

    PubMed  Google Scholar 

  52. Zhu Z, Varadi G, Carter SG. Pharmacokinetics of the transdermal delivery of benfotiamine. Acta Diabetol. 2016;53(2):317–22.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (No. 41853) from Ferdowsi University of Mashhad, which is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Behnam Rassouli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

In clinic, benfotiamine is prescribed for the treatment of diabetic neuropathy. In the present research the preventive effect of BT on hyperglycemic-induced structural abnormalities of sciatic nerve are highlighted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafadar Ghasemi, L., Behnam Rassouli, M., Matin, M.M. et al. Benfotiamine reduced collagen IV contents of sciatic nerve in hyperglycemic rats. J Diabetes Metab Disord 20, 21–30 (2021). https://doi.org/10.1007/s40200-020-00666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00666-2

Keywords

Navigation