Skip to main content

Advertisement

Log in

Attenuating properties of Rubus fruticosus L. on oxidative damage and inflammatory response following streptozotocin-induced diabetes in the male Wistar rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Diabetes mellitus is a prevalent metabolic disorder that entails numerous complications in various organs. In current era, different types of diseases are being treated by the applications of herbs. The present study is aimed at investigating the anti-inflammatory and antioxidant effects of the Rubus fruticosus hydroethanolic extracts (RFHE) in the streptozotocin (STZ)-induced diabetic rats.

Methods

At this experimental research, male Wistar rats with the weight of 220 ± 20 g, were categorized randomly into five groups of vehicles as control, STZ (60 mg kg− 1 of body weight, intraperitoneally (i.p.)) and RFHE (50, 100 and 200 mg kg− 1, i.p.). In the last stage (end of week 4) of the experiment, after being euthanized, the blood samples of the rats were collected for measuring malondialdehyde (MDA), glutathione (GSH), total antioxidant status (TAS) as well as inflammatory markers like tumor necrosis factor (TNF)-α, interleukin (IL)-6 and C-reactive protein (CRP).

Results

Data from this study was revealed that diabetes causes oxidative damage and consequently the serum level of inflammatory markers rises. RFHE was shown to be significantly correlated with lowering the level of MDA, TNF-α, IL-6 and CRP of diabetic rats. Moreover, RFHE significantly elevated the GSH and TAS serum levels in diabetic rats when compared with STZ group.

Conclusions

RFHE might have anti-diabetic properties; this outcome may be mediated by high antioxidant and anti-inflammatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taheri E, Saedisomeolia A, Djalali M, Qorbani M, Madani Civi M. The relationship between serum 25-hydroxy vitamin D concentration and obesity in type 2 diabetic patients and healthy subjects. J Diabetes Metab Disord. 2012;11(1):16-. https://doi.org/10.1186/2251-6581-11-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larejani B, Zahedi F. Epidemiology of diabetes mellitus in Iran. Iran J Diabetes Lipid Disord. 2001;1(1):1–8.

    Google Scholar 

  3. Meraci M, Feizi A, Bagher Nejad M. Investigating the prevalence of high blood pressure, type 2 diabetes mellitus and related risk factors according to a large general study in Isfahan- using multivariate logistic regression model. Health Syst Res. 2012;8(2).

  4. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic Med. 1997;14(Suppl 5):1–85.

    Google Scholar 

  5. Daneman D. Type 1 diabetes. Lancet. 2006;367(9513):847–58. doi:https://doi.org/10.1016/S0140-6736(06)68341-4.

    Article  CAS  PubMed  Google Scholar 

  6. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–75. https://doi.org/10.1016/j.freeradbiomed.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  7. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79(8 Suppl):1527–34. doi:https://doi.org/10.1902/jop.2008.080246.

    Article  CAS  PubMed  Google Scholar 

  8. Mohajeri D, Doustar Y, Rezaei A, Mesgari Abbasi M. Hepatoprotective Effect of ethanolic extract of Crocus sativus L. (saffron) stigma in comparison with silymarin against rifampin induced hepatotoxicity in rats. Zahedan J Res Med Sci. 2011;12:53–9.

    Google Scholar 

  9. Zia-Ul-Haq M, Riaz M, De Feo V, Jaafar HZ, Moga M. Rubus fruticosus L.: constituents, biological activities and health related uses. Molecules. 2014;19(8):10998–1029. doi:https://doi.org/10.3390/molecules190810998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monforte MT, Smeriglio A, Germanò MP, Pergolizzi S, Circosta C, Galati EM. Evaluation of antioxidant, antiinflammatory, and gastroprotective properties of Rubus fruticosus L. fruit juice. Phytother Res. 2018;32(7):1404–14. doi:https://doi.org/10.1002/ptr.6078.

    Article  CAS  PubMed  Google Scholar 

  11. Gomar A, Hosseini A, Mirazi N. Preventive effect of Rubus fruticosus on learning and memory impairment in an experimental model of diabetic neuropathy in male rats. Pharma Nutr. 2014;2(4):155–60.

    Google Scholar 

  12. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8.

    CAS  PubMed  Google Scholar 

  13. Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics. 2009;64(3):235–44. doi:https://doi.org/10.1590/s1807-59322009000300015.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, et al. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmcol. 2008;230(1):57–66. doi:https://doi.org/10.1016/j.taap.2008.02.003.

    Article  CAS  Google Scholar 

  15. Yagihashi S, Yamagishi S-I, Wada R. Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract. 2007;77(Suppl 1):184-S9. doi:https://doi.org/10.1016/j.diabres.2007.01.054.

    Article  CAS  Google Scholar 

  16. Calcutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia. 2004;47(4):718–24. doi:https://doi.org/10.1007/s00125-004-1354-2.

    Article  CAS  PubMed  Google Scholar 

  17. Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxid Med Cell Longev. 2015;2015:534873-. doi:https://doi.org/10.1155/2015/534873.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pasaoglu H, Sancak B, Bukan N. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohoku J Exp Med. 2004;203(3):211–8. doi:https://doi.org/10.1620/tjem.203.211.

    Article  CAS  PubMed  Google Scholar 

  19. Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J Cell Biochem. 2017;118(11):3577–85. https://doi.org/10.1002/jcb.26097.

    Article  CAS  PubMed  Google Scholar 

  20. Domingueti CP, Dusse LMSA, Carvalho MdG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat. 2016;30(4):738–45. https://doi.org/10.1016/j.jdiacomp.2015.12.018.

    Article  Google Scholar 

  21. Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, Dain JA, et al. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. Int J Mol Sci. 2018;19(2):461. https://doi.org/10.3390/ijms19020461.

    Article  CAS  PubMed Central  Google Scholar 

  22. Caidan R, Cairang L, Pengcuo J, Tong L. Comparison of compounds of three Rubus species and their antioxidant activity. Drug Discov Ther. 2015;9(6):391–6. doi:https://doi.org/10.5582/ddt.2015.01179.

    Article  CAS  PubMed  Google Scholar 

  23. Abdu D, Majeed SNJJAC. Identification of antioxidant compounds in red raspberry (Rubus idaeus) fruit in Kurdistan region (North Iraq). 2012;2(3):6–10.

  24. Abdel-Rahman RF, Soliman GA, Saeedan AS, Ogaly HA, Abd-Elsalam RM, Alqasoumi SI, et al. Molecular and biochemical monitoring of the possible herb-drug interaction between Momordica charantia extract and glibenclamide in diabetic rats. Saudi Pharm J. 2019;27(6):803–16. doi:https://doi.org/10.1016/j.jsps.2019.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jean-Gilles D, Li L, Ma H, Yuan T, Chichester CO III, Seeram NP. Anti-inflammatory effects of polyphenolic-enriched red raspberry extract in an antigen-induced arthritis rat model. J Agric Food Chem. 2012;60(23):5755–62. doi:https://doi.org/10.1021/jf203456w.

    Article  CAS  PubMed  Google Scholar 

  26. Sangiovanni E, Vrhovsek U, Rossoni G, Colombo E, Brunelli C, Brembati L, et al. Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One. 2013;8(8):e71762. doi:https://doi.org/10.1371/journal.pone.0071762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have declared that there were no funding received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Mirazi.

Ethics declarations

Conflict of interest disclosure

The authors wish to declare that there were no competing interests.

Research involving human participants and/or animals

All the ethical considerations of working with the animals were accounted for (Guide for the Care and Use of Laboratory Animals, 8th edition, National Academies Press). Furthermore, the Ethics Committee of Bu-Ali Sina University, confirmed the validity of this project (IR.BASU.REC.1397.036).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirazi, N., Hosseini, A. Attenuating properties of Rubus fruticosus L. on oxidative damage and inflammatory response following streptozotocin-induced diabetes in the male Wistar rats. J Diabetes Metab Disord 19, 1311–1316 (2020). https://doi.org/10.1007/s40200-020-00649-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00649-3

Keywords

Navigation