Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases

Abstract

Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients’ lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    P. Saeedi et al., “Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition,” Diabetes Res. Clin. Pract., vol. 157, 2019, https://doi.org/10.1016/j.diabres.2019.107843.

  2. 2.

    Staffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138–9. https://doi.org/10.1038/ng1097-138.

    Article  Google Scholar 

  3. 3.

    IDF diabetes atlas, Eighth edition 2017.

  4. 4.

    T. D. P. Group. Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23(8):857–66. https://doi.org/10.1111/j.1464-5491.2006.01925.x.

    Article  Google Scholar 

  5. 5.

    Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet (London, England). 2009;373(9680):2027–33. https://doi.org/10.1016/S0140-6736(09)60568-7.

    Article  Google Scholar 

  6. 6.

    Tiwari P. Recent trends in therapeutic approaches for diabetes management: a comprehensive update. J Diabetes Res. 2015;2015:340838–11. https://doi.org/10.1155/2015/340838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. Sep. 2016;7(17):354–95. https://doi.org/10.4239/wjd.v7.i17.354.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Otto-Buczkowska E, Jainta N. Pharmacological treatment in diabetes mellitus type 1 - insulin and what else? Int J Endocrinol Metab. Nov. 2017;16(1):–e13008. https://doi.org/10.5812/ijem.13008.

  9. 9.

    Shomali M. Diabetes treatment in 2025: can scientific advances keep pace with prevalence? Ther Adv Endocrinol Metab. Oct. 2012;3(5):163–73. https://doi.org/10.1177/2042018812465639.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Klingemann H, Matzilevich D, Marchand J. Mesenchymal stem cells - sources and clinical applications. Transfus Med Hemother. Aug. 2008;35(4):272–7. https://doi.org/10.1159/000142333.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. May 2011;9:12. https://doi.org/10.1186/1478-811X-9-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    R. Jiang, “Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes : a pilot study.” Front Med. 2011;5(1):94–100. https://doi.org/10.1007/s11684-011-0116-z.

  13. 13.

    Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant. Jun. 2008;14(6):631–40. https://doi.org/10.1016/j.bbmt.2008.01.006.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. Mar. 2010;28(3):585–96. https://doi.org/10.1002/stem.269.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, et al. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011;272(1):33–8. https://doi.org/10.1016/j.cellimm.2011.09.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. May 2006;24(5):1294–301. https://doi.org/10.1634/stemcells.2005-0342.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Anzalone R, Iacono ML, Corrao S, Magno F, Loria T, Cappello F, et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. Dec. 2009;19(4):423–38. https://doi.org/10.1089/scd.2009.0299.

    Article  Google Scholar 

  18. 18.

    Najar M, Raicevic G, Boufker HI, Kazan HF, Bruyn CD, Meuleman N, et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton’s jelly and bone marrow sources. Cell Immunol. 2010;264(2):171–9. https://doi.org/10.1016/j.cellimm.2010.06.006.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Li C, Zhang W, Jiang X, Mao N. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res. 2007;330(3):437–46. https://doi.org/10.1007/s00441-007-0504-5.

    Article  PubMed  Google Scholar 

  20. 20.

    Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. Nov. 2006;24(11):2582–91. https://doi.org/10.1634/stemcells.2006-0228.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150–6. https://doi.org/10.1016/j.cellimm.2009.06.010.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Shi D, et al. Human adipose tissue−derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1−mediated inhibition of NF-κB signaling. Exp Hematol. Feb. 2011;39(2):214–224.e1. https://doi.org/10.1016/j.exphem.2010.10.009.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PLoS One. 2014;9(8):e104662. https://doi.org/10.1371/journal.pone.0104662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol. Jan. 2015;48(3):207–13. https://doi.org/10.1590/1414-431X20144051.

    Article  CAS  Google Scholar 

  25. 25.

    Hwang JH, et al. Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J Korean Med Sci. Aug. 2009;24(4):547–54. https://doi.org/10.3346/jkms.2009.24.4.547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. Aug. 2012;21(12):2189–203. https://doi.org/10.1089/scd.2011.0674.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. Mar. 2008;17(4):761–74. https://doi.org/10.1089/scd.2007.0217.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    van Harmelen V, Röhrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metab Clin Exp. May 2004;53(5):632–7. https://doi.org/10.1016/j.metabol.2003.11.012.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    La Rocca G, et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. Feb. 2009;131(2):267–82. https://doi.org/10.1007/s00418-008-0519-3.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. Jan. 2003;21(1):50–60. https://doi.org/10.1634/stemcells.21-1-50.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Heo JS, Choi Y, Kim H-S, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. Jan. 2016;37(1):115–25. https://doi.org/10.3892/ijmm.2015.2413.

    Article  PubMed  Google Scholar 

  32. 32.

    Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704. https://doi.org/10.3892/ijmm.2014.1821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm. (Lond). Jul. 2005;2:8. https://doi.org/10.1186/1476-9255-2-8.

    Article  CAS  Google Scholar 

  34. 34.

    Atoui R, Chiu RCJ. Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med. Mar. 2012;1(3):200–5. https://doi.org/10.5966/sctm.2011-0012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells. Diabetes. 2008;57(7):1759 LP–1767. https://doi.org/10.2337/db08-0180.

    Article  CAS  Google Scholar 

  36. 36.

    Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. Nov. 2007;25(11):2739–49. https://doi.org/10.1634/stemcells.2007-0197.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells. Jan. 2011;29(1):5–10. https://doi.org/10.1002/stem.556.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Mensah-Brown EPK, Shahin A, Al-Shamisi M, Wei X, Lukic ML. IL-23 leads to diabetes induction after subdiabetogenic treatment with multiple low doses of streptozotocin. Eur J Immunol. Jan. 2006;36(1):216–23. https://doi.org/10.1002/eji.200535325.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. Mar. 2006;98(5):596–605. https://doi.org/10.1161/01.RES.0000207406.94146.c2.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    H. Sciences, A. Ain, U. A. Emirates, and S. Medical, “Concise review : mesenchymal stem cell treatment of the complications of diabetes mellitus”. Stem Cells, 2011; pp. 5–10.  https://doi.org/10.1002/stem.556.

  41. 41.

    Subrina J, Ichiro S, Yuichi H, Akira K. Role of angiotensin II in altered expression of molecules responsible for coronary matrix remodeling in insulin-resistant diabetic rats. Arterioscler Thromb Vasc Biol. Nov. 2003;23(11):2021–6. https://doi.org/10.1161/01.ATV.0000094235.78783.D1.

    Article  CAS  Google Scholar 

  42. 42.

    Camp TM, Tyagi SC, Senior RM, Hayden MR, Tyagi SC. Gelatinase B(MMP-9) an apoptotic factor in diabetic transgenic mice. Diabetologia. Oct. 2003;46(10):1438–45. https://doi.org/10.1007/s00125-003-1200-y.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Yoon Y, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circ. Apr. 2005;111(16):2073–85. https://doi.org/10.1161/01.CIR.0000162472.52990.36.

    Article  CAS  Google Scholar 

  44. 44.

    Zhang N, Li J, Luo R, Jiang J, Wang J-A. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes. Feb. 2008;116(2):104–11. https://doi.org/10.1055/s-2007-985154.

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. Dec. 2004;14(6):1035–41.

    PubMed  Google Scholar 

  46. 46.

    Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A. Nov. 2006;103(46):17438–43. https://doi.org/10.1073/pnas.0608249103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Grange C, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. Mar. 2019;9(1):4468. https://doi.org/10.1038/s41598-019-41100-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Kholia S, et al. Mesenchymal stem cell derived extracellular vesicles ameliorate kidney injury in aristolochic acid nephropathy. Front Cell Dev Biol. 2020, [Online]. Available;8:188. https://doi.org/10.3389/fcell.2020.00188.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Vinik AI, Park TS, Stansberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia. Aug. 2000;43(8):957–73. https://doi.org/10.1007/s001250051477.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Kinnaird T, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circ. Mar. 2004;109(12):1543–9. https://doi.org/10.1161/01.CIR.0000124062.31102.57.

    Article  CAS  Google Scholar 

  51. 51.

    Rajashekhar G. Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol (Lausanne). 2014;5:59. https://doi.org/10.3389/fendo.2014.00059.

    Article  Google Scholar 

  52. 52.

    Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. Dec. 2006;116(12):3266–76. https://doi.org/10.1172/JCI29683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Friedlander M, et al. Progenitor cells and retinal angiogenesis. Angiogenesis. Jun. 2007;10(2):89–101. https://doi.org/10.1007/s10456-007-9070-4.

    Article  PubMed  Google Scholar 

  54. 54.

    Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol. Oct. 2010;248(10):1415–22. https://doi.org/10.1007/s00417-010-1384-z.

    Article  PubMed  Google Scholar 

  55. 55.

    Elshaer SL, et al. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2(Akita) mouse. Stem Cell Res Ther. Nov. 2018;9(1):322. https://doi.org/10.1186/s13287-018-1059-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Medina A, Scott PG, Ghahary A, Tredget EE. Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil. 2005;26(4):306–19.

    Article  Google Scholar 

  57. 57.

    Spanheimer RG. Correlation between decreased collagen production in diabetic animals and in cells exposed to diabetic serum: response to insulin. Matrix. Apr. 1992;12(2):101–7.

    Article  CAS  Google Scholar 

  58. 58.

    Ariyanti AD, Zhang J, Marcelina O, Nugrahaningrum DA, Wang G, Kasim V, et al. Salidroside-pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia. Stem Cells Transl Med. Apr. 2019;8(4):404–14. https://doi.org/10.1002/sctm.18-0143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Lu H, et al. Salidroside reduces high-glucose-induced podocyte apoptosis and oxidative stress via upregulating heme oxygenase-1 (HO-1) expression. Med Sci Monit. 2017;23:4067–76. https://doi.org/10.12659/msm.902806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Shi K, Wang X, Zhu J, Cao G, Zhang K, Su Z. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Biosci Biotechnol Biochem. Sep. 2015;79(9):1406–13. https://doi.org/10.1080/09168451.2015.1038212.

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Ariyanti AD, et al. Elevating VEGF-A and PDGF-BB secretion by salidroside enhances neoangiogenesis in diabetic hind-limb ischemia. Oncotarget. 2017;8(57):97187–205. https://doi.org/10.18632/oncotarget.21907.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zhang J, et al. Inhibition of PHD3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors. Sci Rep. Mar. 2017;7:43935. https://doi.org/10.1038/srep43935.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Vojtassak J, et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett. Dec. 2006;27(Suppl 2):134–7.

    PubMed  Google Scholar 

  64. 64.

    Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: a review. World J Stem Cells. Aug. 2017;9(8):107–17. https://doi.org/10.4252/wjsc.v9.i8.107.

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. Jun. 2017;8(1):145. https://doi.org/10.1186/s13287-017-0598-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Moon K-C, et al. Potential of allogeneic adipose-derived stem cell–hydrogel complex for treating diabetic foot ulcers. Diabetes. Apr. 2019;68(4):837 LP–846. https://doi.org/10.2337/db18-0699.

    Article  CAS  Google Scholar 

  67. 67.

    Cao Y, Gang X, Sun C, Wang G. Mesenchymal stem cells improve healing of diabetic foot ulcer. J Diabetes Res. 2017;2017:9328347–10. https://doi.org/10.1155/2017/9328347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Lopes L, et al. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther. Jul. 2018;9(1):188. https://doi.org/10.1186/s13287-018-0938-6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. Feb. 2007;25(2):371–9. https://doi.org/10.1634/stemcells.2005-0620.

    Article  PubMed  CAS  Google Scholar 

  70. 70.

    Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. Jul. 2005;54(7):2060–9.

    Article  CAS  Google Scholar 

  71. 71.

    Yeung TY, et al. Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines. PLoS ONE. 2012;7(5):1–9. https://doi.org/10.1371/journal.pone.0038189.

    Article  CAS  Google Scholar 

  72. 72.

    Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol. May 2005;77(5):587–97. https://doi.org/10.1189/jlb.1104649.

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Street CN, Lakey JRT, Shapiro AMJ, Imes S, Rajotte RV, Ryan EA, et al. Islet graft assessment in the Edmonton protocol: implications for predicting long-term clinical outcome. Diabetes. Dec. 2004;53(12):3107–14.

    Article  CAS  Google Scholar 

  74. 74.

    Monaghan M, Helgeson V, Wiebe D. Type 1 diabetes in young adulthood. Curr Diabetes Rev. 2015;11(4):239–50. https://doi.org/10.2174/1573399811666150421114957.

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Drexhage HA, Dik WA, Leenen PJM, Versnel MA. The immune pathogenesis of type 1 diabetes: not only thinking outside the cell but also outside the islet and out of the box. Diabetes. Aug. 2016;65(8):2130 LP–2133. https://doi.org/10.2337/dbi16-0030.

    Article  CAS  Google Scholar 

  76. 76.

    Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev. 2008;7(7):550–7. https://doi.org/10.1016/j.autrev.2008.04.008.

    Article  PubMed  CAS  Google Scholar 

  77. 77.

    Yoon JW, Jun HS, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity. 1998;27(2):109–22.

    Article  CAS  Google Scholar 

  78. 78.

    Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med. May 2013;2(5):328–36. https://doi.org/10.5966/sctm.2012-0116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. 79.

    Shapiro AM, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. Jul. 2000;343(4):230–8. https://doi.org/10.1056/NEJM200007273430401.

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Wu H, Mahato RI. Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med. Mar. 2014;17(93):139–43.

    PubMed  Google Scholar 

  81. 81.

    Dang LT-T, Phan NK, Truong KD. Mesenchymal stem cells for diabetes mellitus treatment: new advances. Biomed Res Ther. 2017;4(1):1062. https://doi.org/10.15419/bmrat.v4i1.144.

    Article  Google Scholar 

  82. 82.

    Katuchova J, Harvanova D, Spakova T, Kalanin R. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endorc Pathol. 2015;26:95–103. https://doi.org/10.1007/s12022-015-9362-y.

    Article  CAS  Google Scholar 

  83. 83.

    Wang M, Yuan Q, Xie L. Review article mesenchymal stem cell-based immunomodulation : properties and clinical application. Stem Cells Int. 2018;2018:12.

  84. 84.

    Jiang X-X, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. May 2005;105(10):4120–6. https://doi.org/10.1182/blood-2004-02-0586.

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. Aug. 2007;25(8):2025–32. https://doi.org/10.1634/stemcells.2006-0548.

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Xu G, Zhang Y, Zhang L, Ren G, Shi Y. The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun. Sep. 2007;361(3):745–50. https://doi.org/10.1016/j.bbrc.2007.07.052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. Jan. 2008;26(1):151–62. https://doi.org/10.1634/stemcells.2007-0416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. 88.

    Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. Feb. 2009;32(1):33–42. https://doi.org/10.1016/j.jaut.2008.10.004.

    Article  PubMed  CAS  Google Scholar 

  89. 89.

    Le Rond S, et al. Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/ regulatory t cells. J Immunol. Mar. 2006;176(5):3266 LP–3276. https://doi.org/10.4049/jimmunol.176.5.3266.

    Article  Google Scholar 

  90. 90.

    Haddad R, Saldanha-araujo F. Mechanisms of t-cell immunosuppression by mesenchymal stromal cells : what do we know so far ? Biomed Res Int. 2014;2014:14.

  91. 91.

    Selmani Z, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. Jan. 2008;26(1):212–22. https://doi.org/10.1634/stemcells.2007-0554.

    Article  PubMed  CAS  Google Scholar 

  92. 92.

    Nasef A, et al. Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol. Feb. 2009;31(1):9–19. https://doi.org/10.1111/j.1751-553X.2007.00997.x.

    Article  PubMed  CAS  Google Scholar 

  93. 93.

    Zhao Y, Lin B, Darflinger R, Zhang Y, Holterman MJ, Skidgel RA. Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS One. 2009;4(1):e4226. https://doi.org/10.1371/journal.pone.0004226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. 94.

    Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. Jun. 2010;43(4):255–63. https://doi.org/10.3109/08916930903305641.

    Article  PubMed  CAS  Google Scholar 

  95. 95.

    Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. Aug. 2007;149(2):353–63. https://doi.org/10.1111/j.1365-2249.2007.03422.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. 96.

    Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. Jun. 2004;103(12):4619–21. https://doi.org/10.1182/blood-2003-11-3909.

    Article  PubMed  CAS  Google Scholar 

  97. 97.

    Maby-El Hajjami H, et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res. Apr. 2009;69(7):3228–37. https://doi.org/10.1158/0008-5472.CAN-08-3000.

    Article  PubMed  CAS  Google Scholar 

  98. 98.

    Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. Mar. 2010;1(1):2. https://doi.org/10.1186/scrt2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. 99.

    Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. Jan. 2007;109(1):228–34. https://doi.org/10.1182/blood-2006-02-002246.

    Article  PubMed  CAS  Google Scholar 

  100. 100.

    Ren G, Su J, Zhang L, Zhao X, Ling W, L'huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. Aug. 2009;27(8):1954–62. https://doi.org/10.1002/stem.118.

    Article  PubMed  CAS  Google Scholar 

  101. 101.

    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. Feb. 2005;105(4):1815–22. https://doi.org/10.1182/blood-2004-04-1559.

    Article  PubMed  CAS  Google Scholar 

  102. 102.

    Nemeth K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. Jan. 2009;15(1):42–9. https://doi.org/10.1038/nm.1905.

    Article  PubMed  CAS  Google Scholar 

  103. 103.

    Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. Jun. 2009;113(26):6576–83. https://doi.org/10.1182/blood-2009-02-203943.

    Article  PubMed  CAS  Google Scholar 

  104. 104.

    Quaedackers ME, Baan CC, Weimar W, Hoogduijn MJ. Cell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytes. Eur J Immunol. Dec. 2009;39(12):3436–46. https://doi.org/10.1002/eji.200939584.

    Article  PubMed  CAS  Google Scholar 

  105. 105.

    De Miguel MP, Pascual CY, Aller MA, Arias J. Immunosuppressive properties of mesenchymal stem cells : advances and applications. Curr Mol Med. 2012;12(5):574–91.

  106. 106.

    Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. Feb. 2008;2(2):141–50. https://doi.org/10.1016/j.stem.2007.11.014.

    Article  PubMed  CAS  Google Scholar 

  107. 107.

    Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. Nov. 2007;110(10):3499 LP–3506. https://doi.org/10.1182/blood-2007-02-069716.

    Article  CAS  Google Scholar 

  108. 108.

    Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. Sep. 2008;40(9):1098–102. https://doi.org/10.1038/ng.208.

    Article  PubMed  CAS  Google Scholar 

  109. 109.

    Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. Feb. 2007;445(7130):881–5. https://doi.org/10.1038/nature05616.

    Article  PubMed  CAS  Google Scholar 

  110. 110.

    Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia. Dec. 1998;41(12):1511–5. https://doi.org/10.1007/s001250051098.

    Article  PubMed  CAS  Google Scholar 

  111. 111.

    Ali O. Genetics of type 2 diabetes. World J Diabetes. Aug. 2013;4(4):114–23. https://doi.org/10.4239/wjd.v4.i4.114.

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Yamauchi T, Tobe K, Tamemoto H, Ueki K, Kaburagi Y, Yamamoto-Honda R, et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. Jun. 1996;16(6):3074–84. https://doi.org/10.1128/mcb.16.6.3074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. 113.

    Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes. Jul. 2010;1(3):68–75. https://doi.org/10.4239/wjd.v1.i3.68.

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. Dec. 2005;115(12):3587–93. https://doi.org/10.1172/JCI25151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. 115.

    Zang L, Hao H, Liu J, Li Y, Han W, Mu Y. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol Metab Syndr. May 2017;9:36. https://doi.org/10.1186/s13098-017-0233-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. 116.

    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. https://doi.org/10.1002/jcb.20886.

    Article  PubMed  CAS  Google Scholar 

  117. 117.

    Chen L, Tredget EE, Wu PYG, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. Apr. 2008;3(4):e1886. https://doi.org/10.1371/journal.pone.0001886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. 118.

    Park CW, et al. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J stem cells. 2009;2(1):59–68. https://doi.org/10.15283/ijsc.2009.2.1.59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. 119.

    Bastidas-Coral AP, Bakker AD, Zandieh-Doulabi B, Kleverlaan CJ, Bravenboer N, Forouzanfar T, et al. Cytokines TNF-α, IL-6, IL-17F, and IL-4 differentially affect osteogenic differentiation of human adipose stem cells. Stem Cells Int. 2016;2016:1318256–9. https://doi.org/10.1155/2016/1318256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. 120.

    Cuerquis J, Romieu-Mourez R, François M, Routy JP, Young YK, Zhao J, et al. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation. Cytotherapy. Feb. 2014;16(2):191–202. https://doi.org/10.1016/j.jcyt.2013.11.008.

    Article  PubMed  CAS  Google Scholar 

  121. 121.

    Skyler JS, Fonseca VA, Segal KR, Rosenstock J, Investigators M-D. Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care. Sep. 2015;38(9):1742–9. https://doi.org/10.2337/dc14-2830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. 122.

    Kong D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab. 2014;60(12):1969–76.

    PubMed  CAS  Google Scholar 

  123. 123.

    Liu X, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther. Apr. 2014;5(2):57. https://doi.org/10.1186/scrt446.

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Miao X-Y, Gu ZY, Liu P, Hu Y, Li L, Gong YP, et al. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides. 2013;39:71–9. https://doi.org/10.1016/j.peptides.2012.10.006.

    Article  PubMed  CAS  Google Scholar 

  125. 125.

    Shao S, Nie M, Chen C, Chen X, Zhang M, Yuan G, et al. Protective action of liraglutide in beta cells under lipotoxic stress via PI3K/Akt/FoxO1 pathway. J Cell Biochem. Jun. 2014;115(6):1166–75. https://doi.org/10.1002/jcb.24763.

    Article  PubMed  CAS  Google Scholar 

  126. 126.

    W. Wang et al., “Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes,” Diabetes Metab Res Rev, vol. 0, no. 0, p. e3212, 2019, https://doi.org/10.1002/dmrr.3212.

  127. 127.

    Deng Z, Xu H, Zhang J, Yang C, Jin L, Liu J, et al. Infusion of adipose-derived mesenchymal stem cells inhibits skeletal muscle Mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats. Mol Med Rep. 2018;17(6):8466–74. https://doi.org/10.3892/mmr.2018.8901.

    Article  PubMed  CAS  Google Scholar 

  128. 128.

    Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes. Jun. 2012;61(6):1616–25. https://doi.org/10.2337/db11-1141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. 129.

    Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46. https://doi.org/10.1146/annurev-physiol-021909-135846.

    Article  PubMed  CAS  Google Scholar 

  130. 130.

    Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. Nov. 2009;58(11):2574–82. https://doi.org/10.2337/db08-1475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. 131.

    Zhang Q-Z, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. Oct. 2010;28(10):1856–68. https://doi.org/10.1002/stem.503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. 132.

    Geng Y, et al. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Res Ther. Jun. 2014;5(3):80. https://doi.org/10.1186/scrt469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. 133.

    Guney MA, Gannon M. Pancreas cell fate. Birth Defects Res C Embryo Today. Sep. 2009;87(3):232–48. https://doi.org/10.1002/bdrc.20156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. 134.

    Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9 -deficient mice. Nat Genet. 1999;23:71–75.

  135. 135.

    Kawaguchi Y, Cooper B, Gannon M, Ray M, Macdonald RJ, Wright CVE. The role of the transcriptional regulator Ptf1a in converting intestinal to. Nat Genet. 2002;32:128–134.  https://doi.org/10.1038/ng959.

  136. 136.

    Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999;23:67–70.

    Article  CAS  Google Scholar 

  137. 137.

    Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95.

    PubMed  CAS  Google Scholar 

  138. 138.

    Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. β-cell-specific inactivation of the mouseIpf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. Jun. 1998;12(12):1763–8. https://doi.org/10.1101/gad.12.12.1763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. 139.

    Gannon M, Tweedie Ables E, Crawford L, Lowe D, Offield MF, Magnuson MA, et al. pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol. Feb. 2008;314(2):406–17. https://doi.org/10.1016/j.ydbio.2007.10.038.

    Article  PubMed  CAS  Google Scholar 

  140. 140.

    Dutta S, Bonner-weir S. Inhibition of ICE slows ALS in mice. Nature. 1998;392:8–10.

    Article  Google Scholar 

  141. 141.

    Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. Oct. 1997;17(2):138–9. https://doi.org/10.1038/ng1097-138.

    Article  PubMed  CAS  Google Scholar 

  142. 142.

    Stoffers DA, Stanojevic V, Habener JF. Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J Clin Investigvol. 1998;1.

  143. 143.

    Chakrabarti SK, James JC, Mirmira RG. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1: importance of chromatin structure in directing promoter binding. J Biol Chem. Apr. 2002;277(15):13286–93. https://doi.org/10.1074/jbc.M111857200.

    Article  PubMed  CAS  Google Scholar 

  144. 144.

    Martin CC, Oeser JK, O’Brien RM. Differential regulation of islet-specific glucose-6-phosphatase catalytic subunit-related protein gene transcription by Pax-6 and Pdx-1. J Biol Chem. Aug. 2004;279(33):34277–89. https://doi.org/10.1074/jbc.M404830200.

    Article  PubMed  CAS  Google Scholar 

  145. 145.

    Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993;12(11):4251–9.

    Article  CAS  Google Scholar 

  146. 146.

    Raum JC, Gerrish K, Artner I, Henderson E, Guo M, Sussel L, et al. FoxA2, Nkx2.2, and PDX-1 regulate islet beta-cell-specific mafA expression through conserved sequences located between base pairs -8118 and -7750 upstream from the transcription start site. Mol Cell Biol. Aug. 2006;26(15):5735–43. https://doi.org/10.1128/MCB.00249-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. 147.

    Smith SB, Watada H, Scheel DW, Mrejen C, German MS. Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter. J Biol Chem. 2000;275(47):36910–9. https://doi.org/10.1074/jbc.M005202200.

    Article  PubMed  CAS  Google Scholar 

  148. 148.

    Ohneda K, Mirmira RG, Wang J, Johnson JD, German MS. The homeodomain of pdx-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol. Feb. 2000;20(3):900 LP–911. https://doi.org/10.1128/MCB.20.3.900-911.2000.

    Article  Google Scholar 

  149. 149.

    Peers B, Leonard J, Sharma S, Teitelman G, Montminy MR. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol Endocrinol. Dec. 1994;8(12):1798–806. https://doi.org/10.1210/mend.8.12.7708065.

    Article  PubMed  CAS  Google Scholar 

  150. 150.

    Lottmann H, Vanselow J, Hessabi B, Walther R. The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic beta-cells. J Mol Med (Berl). Jun. 2001;79(5–6):321–8.

    Article  CAS  Google Scholar 

  151. 151.

    Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. Nov. 1996;10(11):1327–34. https://doi.org/10.1210/mend.10.11.8923459.

    Article  PubMed  CAS  Google Scholar 

  152. 152.

    Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J, et al. Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem. Jul. 2001;276(27):25279–86. https://doi.org/10.1074/jbc.M101233200.

    Article  PubMed  CAS  Google Scholar 

  153. 153.

    Macfarlane WM, Campbell SC, Elrick LJ, Oates V, Bermano G, Lindley KJ, et al. Glucose regulates islet amyloid polypeptide gene transcription in a PDX1- and calcium-dependent manner. J Biol Chem. May 2000;275(20):15330–5. https://doi.org/10.1074/jbc.M908045199.

    Article  PubMed  CAS  Google Scholar 

  154. 154.

    Watada H, Kajimoto Y, Kaneto H, Matsuoka TA, Fujitani Y, Miyazaki JI, et al. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. Dec. 1996;229(3):746–51.

    Article  CAS  Google Scholar 

  155. 155.

    Watada H, Kajimoto Y, Miyagawa JI, Hanafusa T, Hamaguchi K, Matsuoka TA, et al. PDX-1 induces insulin and glucokinase gene expressions in αTC1 clone 6 cells in the presence of betacellulin. Diabetes. 1996;45(12):1826 LP–1831. https://doi.org/10.2337/diab.45.12.1826.

    Article  Google Scholar 

  156. 156.

    Watada H, et al. The human glucokinase gene β-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes. Nov. 1996;45(11):1478 LP–1488. https://doi.org/10.2337/diab.45.11.1478.

    Article  Google Scholar 

  157. 157.

    Krapp A, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. Dec. 1998;12(23):3752–63.

    Article  CAS  Google Scholar 

  158. 158.

    Burlison JS, Long Q, Fujitani Y, Wright CVE, Magnuson MA. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. Apr. 2008;316(1):74–86. https://doi.org/10.1016/j.ydbio.2008.01.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. 159.

    Wiebe PO, et al. Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol. Jun. 2007;27(11):4093–104. https://doi.org/10.1128/MCB.01978-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. 160.

    Apelqvist A, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol. Oct. 1997;7(10):801–4.

    Article  CAS  Google Scholar 

  161. 161.

    Villasenor A, Chong DC, Cleaver O. Biphasic Ngn3 expression in the developing pancreas. Dev Dyn. Nov. 2008;237(11):3270–9. https://doi.org/10.1002/dvdy.21740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. 162.

    Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. Feb. 2000;97(4):1607–11.

    Article  CAS  Google Scholar 

  163. 163.

    Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. May 2002;129(10):2447–57.

    PubMed  CAS  Google Scholar 

  164. 164.

    Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell. Aug. 2009;138(3):449–62. https://doi.org/10.1016/j.cell.2009.05.035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. 165.

    Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F̧, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. Jun. 2000;20(12):4445–54.

    Article  CAS  Google Scholar 

  166. 166.

    Jacquemin P, Lemaigre FP, Rousseau GG. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol. Jun. 2003;258(1):105–16.

    Article  CAS  Google Scholar 

  167. 167.

    Gannon M, Ray MK, Van Zee K, Rausa F, Costa RH, Wright CV. Persistent expression of HNF6 in islet endocrine cells causes disrupted islet architecture and loss of beta cell function. Development. Jul. 2000;127(13):2883–95.

    PubMed  CAS  Google Scholar 

  168. 168.

    Tweedie E, Artner I, Crawford L, Poffenberger G, Thorens B, Stein R, et al. Maintenance of hepatic nuclear factor 6 in postnatal islets impairs terminal differentiation and function of beta-cells. Diabetes. Dec. 2006;55(12):3264–70. https://doi.org/10.2337/db06-0090.

    Article  PubMed  CAS  Google Scholar 

  169. 169.

    Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev. Oct. 2002;118(1–2):147–55.

    Article  CAS  Google Scholar 

  170. 170.

    Matsuoka T, Artner I, Henderson E, Means A, Sander M, Stein R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci U S A. Mar. 2004;101(9):2930–3. https://doi.org/10.1073/pnas.0306233101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. 171.

    Olbrot M, Rud J, Moss LG, Sharma A. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci U S A. May 2002;99(10):6737–42. https://doi.org/10.1073/pnas.102168499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. 172.

    Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. Jun. 2005;25(12):4969–76. https://doi.org/10.1128/MCB.25.12.4969-4976.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. 173.

    Chen Y, Pan FC, Brandes N, Afelik S, Solter M, Pieler T. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol. Jul. 2004;271(1):144–60. https://doi.org/10.1016/j.ydbio.2004.03.030.

    Article  PubMed  CAS  Google Scholar 

  174. 174.

    Ostrom M, et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One. Jul. 2008;3(7):e2841. https://doi.org/10.1371/journal.pone.0002841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. 175.

    Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. Mar. 1997;386(6623):399–402. https://doi.org/10.1038/386399a0.

    Article  PubMed  CAS  Google Scholar 

  176. 176.

    Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, et al. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol. Feb. 2004;266(1):178–89.

    Article  CAS  Google Scholar 

  177. 177.

    Wang Q, Elghazi L, Martin S, Martins I, Srinivasan RS, Geng X, et al. Ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev Dyn. Jan. 2008;237(1):51–61. https://doi.org/10.1002/dvdy.21379.

    Article  PubMed  CAS  Google Scholar 

  178. 178.

    Doyle MJ, Loomis ZL, Sussel L. Nkx2.2-repressor activity is sufficient to specify alpha-cells and a small number of beta-cells in the pancreatic islet. Development. Feb. 2007;134(3):515–23. https://doi.org/10.1242/dev.02763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. 179.

    Sussel L, Kalamaras J, Hartigan-O'Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. Jun. 1998;125(12):2213–21.

    PubMed  CAS  Google Scholar 

  180. 180.

    Rorsman P, Salehi SA, Abdulkader F, Braun M, MacDonald PE. K(ATP)-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab. Oct. 2008;19(8):277–84. https://doi.org/10.1016/j.tem.2008.07.003.

    Article  PubMed  CAS  Google Scholar 

  181. 181.

    Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem. Apr. 1995;270(15):8971–5.

    Article  CAS  Google Scholar 

  182. 182.

    Heimberg H, et al. The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells. Proc Natl Acad Sci U S A. Jul. 1996;93(14):7036–41. https://doi.org/10.1073/pnas.93.14.7036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. 183.

    Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. Apr. 2010;464(7292):1149–54. https://doi.org/10.1038/nature08894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. 184.

    Urbán VS, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells. Jan. 2008;26(1):244–53. https://doi.org/10.1634/stemcells.2007-0267.

    Article  PubMed  CAS  Google Scholar 

  185. 185.

    Cai J, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care. Jan. 2016;39(1):149 LP–157. https://doi.org/10.2337/dc15-0171.

    Article  CAS  Google Scholar 

  186. 186.

    D’Addio F, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes. Sep. 2014;63(9):3041 LP–3046. https://doi.org/10.2337/db14-0295.

    Article  Google Scholar 

  187. 187.

    Carlsson P-O, Schwarcz E, Korsgren O, Le Blanc K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. Feb. 2015;64(2):587 LP–592. https://doi.org/10.2337/db14-0656.

    Article  CAS  Google Scholar 

  188. 188.

    Ito K, et al. A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric. Tissue Eng Part C Methods. Apr. 2009;16(1):81–91. https://doi.org/10.1089/ten.tec.2008.0693.

    Article  Google Scholar 

  189. 189.

    Otsuru S, Hofmann TJ, Olson TS, Dominici M, Horwitz EM. Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device. Cytotherapy. 2013;15(2):146–53. https://doi.org/10.1016/j.jcyt.2012.10.012.

    Article  PubMed  CAS  Google Scholar 

  190. 190.

    Madeira C, Santhagunam A, Cabral JMS. Advanced cell therapies for articular cartilage regenerationf. Trends Biotechnol. 2014. pp 1–8. https://doi.org/10.1016/j.tibtech.2014.11.003.

  191. 191.

    Gattás-Asfura KM, Stabler CL. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers. ACS Appl Mater Interfaces. Oct. 2013;5(20):9964–74. https://doi.org/10.1021/am401981g.

    Article  PubMed  CAS  Google Scholar 

  192. 192.

    Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M. Device design and materials optimization of conformal coating for islets of Langerhans. PNAS. 2014;111(29). https://doi.org/10.1073/pnas.1402216111.

  193. 193.

    Mravic M, Péault B, James AW. Current trends in bone tissue engineering. Biomed Res Int. 2014;2014:1–5. https://doi.org/10.1155/2014/865270.

    Article  Google Scholar 

  194. 194.

    Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;27:1–43.

  195. 195.

    P. Kong, X. Xie, F. Li, Y. Liu, and Y. Lu, “Biochemical and biophysical research communications placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki ( GK ) rats,” Biochem Biophys Res Commun, no. 2013, https://doi.org/10.1016/j.bbrc.2013.07.088.

  196. 196.

    Ledesma-martínez E, Mendoza-núñez VM, Santiago-osorio E. Mesenchymal stem cells derived from dental pulp : a review. Stem Cells Dev. 2016;2016.

  197. 197.

    Fuller B. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters. 2004;25.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raunak Kumar Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goenka, V., Borkar, T., Desai, A. et al. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord (2020). https://doi.org/10.1007/s40200-020-00647-5

Download citation

Keywords

  • Diabetes-associated diseases
  • Immunomodulation
  • Immunosuppression
  • Insulin-producing cells
  • Insulin resistance
  • Mesenchymal stem cells