Skip to main content

Advertisement

Log in

Aqueous Cichorium intybus L. seed extract may protect against acute palmitate-induced impairment in cultured human umbilical vein endothelial cells by adjusting the Akt/eNOS pathway, ROS: NO ratio and ET-1 concentration

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Endothelial dysfunction, which is a vascular response to oxidative stress and inflammation, involves a cascade of downstream events that lead to decreased synthesis of insulin-mediated vasodilator nitric oxide (NO) and increased production of vasoconstrictor protein endothelin-1 (ET-1). NO, and ET-1 production by endothelial cells is regulated by phosphatidylinositol 3-kinase (PI3K)-Akt-eNOS axis and mitogen-activated protein kinase (MAPK) axis of the insulin signaling pathway, respectively.

Methods

After treating the human umbilical vein endothelial cells (HUVECs) with either palmitate complexed with bovine serum albumin (BSA) (abbreviated as PA) or the aqueous Cichorium intybus L. (chicory) seed extract (chicory seed extract, abbreviated as CSE) alone, and simultaneously together (PA + CSE), for 3, 12, and 24 h, we evaluated the capacity of CSE to reestablish the PA-induced imbalance between PI3K/Akt/eNOS and MAPK signaling pathways. The level of oxidative stress was determined by fluorimeter. Insulin-induced levels of NO and ET-1 were measured by Griess and ELISA methods, respectively. Western blotting was used to determine the extent of Akt and eNOS phosphorylation.

Results

Contrary to PA that caused an increase in the reactive oxygen species (ROS) levels and attenuated NO production, CSE readjusted the NO/ROS ratio within 12 h. CSE improved the metabolic arm of the insulin signaling pathway by up-regulating the insulin-stimulated phospho-eNOS Ser1177/total eNOS and phospho-Akt Thr308/total Akt ratios and decreased ET-1 levels.

Conclusions

CSE ameliorated the PA-induced endothelial dysfunction not only by its anti-ROS property but also by selectively enhancing the protective arm and diminishing the injurious arm of insulin signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Akt:

(Protein kinase B)

AMPK:

5' Adenosine Monophosphate-Activated Protein Kinase

BSA:

Bovine Serum Albumin

CSE:

Chicory Seed Extract (aqueous)

DMEM:

Dulbecco's Modified Eagle's Medium

eNOS:

Endothelial Nitric Oxide Synthase

ET-1:

Endothelin-1

FBS:

Fetal Bovine Serum

FFA:

Free Fatty Acids

HUVECs:

Human Umbilical Vein Endothelial Cells

HRP:

Horseradish Peroxidase

IKKβ:

Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Beta

iNOS:

Inducible Nitric Oxide Synthase

INSR:

Insulin Receptor

IR:

Insulin Resistance

MTT:

3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl-2H-Tetrazolium Bromide

MAPK:

Mitogen-Activated Protein Kinase

PES:

Polyethersulfone

NO:

Nitric Oxide

NF-κB:

Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells

PA:

an abbreviation for palmitate-BSA

PI3K:

Phosphatidylinositol 3-Kinase

PKA:

Protein Kinase A

ROS:

Reactive Oxygen Species

References

  1. Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: pathophysiology and therapeutic approaches. J Adv Res. 2020. https://doi.org/10.1016/j.jare.2020.05.015.

  2. Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Rad Biol Med. 2020. https://doi.org/10.1016/j.freeradbiomed.2020.02.026.

  3. Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. 2018;9:114. https://doi.org/10.3389/fphys.2018.00114.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Masaki N, Ido Y, Yamada T, Yamashita Y, Toya T, Takase B, et al. Endothelial insulin resistance of freshly isolated arterial endothelial cells from radial sheaths in patients with suspected coronary artery disease. J Am Heart Assoc. 2019;8(6):e010816. https://doi.org/10.1161/jaha.118.010816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121. https://doi.org/10.1186/s12944-015-0123-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14(1):5–12. https://doi.org/10.1007/s11154-012-9229-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Richey JM. The vascular endothelium, a benign restrictive barrier? NO! Role of nitric oxide in regulating insulin action. Diabetes. 2013;62(12):4006–8. https://doi.org/10.2337/db13-1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, et al. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinol. 2007;148(1):160–5. https://doi.org/10.1210/en.2006-1132.

    Article  CAS  Google Scholar 

  9. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–21. https://doi.org/10.1038/nrm3801.

    Article  CAS  PubMed  Google Scholar 

  10. Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta. 2014;1840(9):2709–29. https://doi.org/10.1016/j.bbagen.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Tao L, Hai CX. Redox-regulating role of insulin: The essence of insulin effect. Molecular and Cellular Endocrinol. 2012;349(2):111–27. https://doi.org/10.1016/j.mce.2011.08.019.

    Article  CAS  Google Scholar 

  12. Aghili Khorasani MH. Makhzan-al-Adviah. Rewritten by shams Ardakani MR, Rahimi R, Farjadmand F. 1st ed. 1771. Tehran University of Medical Sciences.

  13. Balbaa SI, Zaki AY, Abdel-Wahab SM. el-Denshary ES, Motazz-Bellah M. preliminary phytochemical and pharmacological investigations of the roots of different varieties of Cichorium intybus. Planta Med. 1973;24(2):133–44. https://doi.org/10.1055/s-0028-1099480.

    Article  CAS  PubMed  Google Scholar 

  14. Nowrouzi A, Pourfarjam Y, Amiri A. Cichorium intybus L. (CI) as an insulin sensitizer. Diabetes. 2013;(62, Suppl. 1):A304.

  15. Ghamarian A, Abdollahi M, Su X, Amiri A, Ahadi A, Nowrouzi A. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. Daru. 2012;20(1):56. https://doi.org/10.1186/2008-2231-20-56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis. 2016;26(4):285–92. https://doi.org/10.1016/j.numecd.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  17. Guo R, Zhao B, Wang Y, Wu D, Wang Y, Yu Y, et al. Cichoric acid prevents free-fatty-acid-induced lipid metabolism disorders via regulating Bmal1 in HepG2 cells. J Agric Food Chem. 2018;66(37):9667–78. https://doi.org/10.1021/acs.jafc.8b02147.

    Article  CAS  PubMed  Google Scholar 

  18. Hazra B, Sarkar R, Bhattacharyya S, Roy P. Tumour inhibitory activity of chicory root extract against Ehrlich ascites carcinoma in mice. Fitoterapia. 2002;73(7–8):730–3. https://doi.org/10.1016/S0367-326X(02)00232-0.

    Article  CAS  PubMed  Google Scholar 

  19. Karthikesan K, Pari L, Menon VP. Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem Biol Interact. 2010;188(3):643–50. https://doi.org/10.1016/j.cbi.2010.07.026.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar G, Mukherjee S, Paliwal P, Singh SS, Birla H, Singh SP, et al. Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model. Naunyn Schmiedeberg's Arch Pharmacol. 2019;392(10):1293–309. https://doi.org/10.1007/s00210-019-01670-x.

    Article  CAS  Google Scholar 

  21. Lee YH, Kim DH, Kim YS, Kim TJ. Prevention of oxidative stress-induced apoptosis of C2C12 myoblasts by a Cichorium intybus root extract. Biosci Biotechnol Biochem. 2013;77(2):375–7. https://doi.org/10.1271/bbb.120465.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Chen Y, Shen C, Xiao Y, Wang Y, Liu Z, et al. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-kappaB. FASEB J. 2017;31(4):1494–507. https://doi.org/10.1096/fj.201601071R.

    Article  CAS  PubMed  Google Scholar 

  23. Milala J, Grzelak-Błaszczyk K, Król B, Juśkiewicz J, Zdunczyk Z. Composition and properties of chicory extracts rich in fructans and polyphenols. Pol J Food Nutr Sci. 2009;59(1):35–43.

    CAS  Google Scholar 

  24. Papetti A, Daglia M, Grisoli P, Dacarro C, Gregotti C, Gazzani G. Anti- and pro-oxidant activity of Cichorium genus vegetables and effect of thermal treatment in biological systems. Food Chem. 2006;97(1):157–65. https://doi.org/10.1016/j.foodchem.2005.03.036.

    Article  CAS  Google Scholar 

  25. Singh H. Anti-diabetic activity of Methanolic extract of chicory roots in streptozocin induced diabetic rats. Int J Pharm. 2013;3:211–6.

    Google Scholar 

  26. Suzuki A, Yamamoto N, Jokura H, Yamamoto M, Fujii A, Tokimitsu I, et al. Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J Hypertens. 2006;24(6):1065–73. https://doi.org/10.1097/01.hjh.0000226196.67052.c0.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai KL, Kao CL, Hung CH, Cheng YH, Lin HC, Chu PM. Chicoric acid is a potent anti-atherosclerotic ingredient by anti-oxidant action and anti-inflammation capacity. Oncotarget. 2017;8(18):29600–12. https://doi.org/10.18632/oncotarget.16768.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu D, Wang Y, Du Q, Liu Z, Liu X. Cichoric acid reverses insulin resistance and suppresses inflammatory responses in the glucosamine-induced HepG2 cells. J Agric Food Chem. 2015;63(51):10903–13. https://doi.org/10.1021/acs.jafc.5b04533.

    Article  CAS  PubMed  Google Scholar 

  29. Gehrmann W, Wurdemann W, Plotz T, Jorns A, Lenzen S, Elsner M. Antagonism between saturated and unsaturated fatty acids in ROS mediated lipotoxicity in rat insulin-producing cells. Cell Physiol Biochem. 2015;36(3):852–65. https://doi.org/10.1159/000430261.

    Article  CAS  PubMed  Google Scholar 

  30. Lee H, Lim JY, Choi SJ. Oleate prevents palmitate-induced atrophy via modulation of mitochondrial ROS production in skeletal myotubes. Oxidative Med Cell Longev. 2017;2017:2739721–11. https://doi.org/10.1155/2017/2739721.

    Article  CAS  Google Scholar 

  31. Perdomo L, Beneit N, Otero YF, Escribano O, Diaz-Castroverde S, Gomez-Hernandez A, et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol. 2015;14:75. https://doi.org/10.1186/s12933-015-0237-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009;24(5):830–40. https://doi.org/10.1111/j.1440-1746.2008.05733.x.

    Article  CAS  PubMed  Google Scholar 

  33. Jeong SO, Son Y, Lee JH, Cheong YK, Park SH, Chung HT, et al. Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol Med Rep. 2015;12(1):937–44. https://doi.org/10.3892/mmr.2015.3553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fratantonio D, Cimino F, Molonia MS, Ferrari D, Saija A, Virgili F, et al. Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors. Biochim Biophys Acta. 2017;1862(3):351–7. https://doi.org/10.1016/j.bbalip.2016.12.008.

    Article  CAS  Google Scholar 

  35. Ye M, Qiu H, Cao Y, Zhang M, Mi Y, Yu J, et al. Curcumin improves palmitate-induced insulin resistance in human umbilical vein endothelial cells by maintaining proteostasis in endoplasmic reticulum. Front Pharmacol. 2017;8:148. https://doi.org/10.3389/fphar.2017.00148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang Z, Xia N, Yuan X, Zhu X, Xu G, Cui S, et al. PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells. Biochem Biophys Res Commun. 2015;465(4):670–7. https://doi.org/10.1016/j.bbrc.2015.08.008.

    Article  CAS  PubMed  Google Scholar 

  37. Park G, Sim Y, Lee W, Sung SH, Oh MS. Protection on skin aging mediated by antiapoptosis effects of the water lily (Nymphaea Tetragona Georgi) via reactive oxygen species scavenging in human epidermal keratinocytes. Pharmacology. 2016;97(5–6):282–93. https://doi.org/10.1159/000444022.

    Article  CAS  PubMed  Google Scholar 

  38. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62–71. https://doi.org/10.1006/niox.2000.0319.

    Article  CAS  PubMed  Google Scholar 

  39. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  40. Fratantonio D, Speciale A, Ferrari D, Cristani M, Saija A, Cimino F. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol Lett. 2015;239(3, 152):–60. https://doi.org/10.1016/j.toxlet.2015.09.020.

  41. Zhang M, Wang CM, Li J, Meng ZJ, Wei SN, Li J, et al. Berberine protects against palmitate-induced endothelial dysfunction: involvements of upregulation of AMPK and eNOS and downregulation of NOX4. Mediat Inflamm. 2013;2013:260464–8. https://doi.org/10.1155/2013/260464.

    Article  CAS  Google Scholar 

  42. Kim JE, Song SE, Kim YW, Kim JY, Park SC, Park YK, et al. Adiponectin inhibits palmitate-induced apoptosis through suppression of reactive oxygen species in endothelial cells: involvement of cAMP/protein kinase a and AMP-activated protein kinase. J Endocrinol. 2010;207(1):35–44. https://doi.org/10.1677/JOE-10-0093.

    Article  CAS  PubMed  Google Scholar 

  43. Mahmoud AM, Wilkinson FL, McCarthy EM, Moreno-Martinez D, Langford-Smith A, Romero M, et al. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. FASEB J. 2017;31(10):4636–48. https://doi.org/10.1096/fj.201601244RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116(4):1071–80. https://doi.org/10.1172/JCI23354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol. 2015;79:1–12. https://doi.org/10.1016/j.yjmcc.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao W, Wu C, Li S, Chen X. Adiponectin protects palmitic acid induced endothelial inflammation and insulin resistance via regulating ROS/IKKbeta pathways. Cytokine. 2016;88:167–76. https://doi.org/10.1016/j.cyto.2016.09.005.

    Article  CAS  PubMed  Google Scholar 

  47. Storniolo CE, Roselló-Catafau J, Pintó X, Mitjavila MT, Moreno JJ. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol. 2014;2:971–7. https://doi.org/10.1016/j.redox.2014.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadeghi A, Seyyed Ebrahimi SS, Golestani A, Meshkani R. Resveratrol ameliorates palmitate-induced inflammation in skeletal muscle cells by attenuating oxidative stress and JNK/NF-kappaB pathway in a SIRT1-independent mechanism. J Cell Biochem. 2017;118(9):2654–63. https://doi.org/10.1002/jcb.25868.

    Article  CAS  PubMed  Google Scholar 

  49. Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 2007;46(3):823–30. https://doi.org/10.1002/hep.21752.

    Article  CAS  PubMed  Google Scholar 

  50. Wang S-L, Li Y, Wen Y, Chen Y-F, Na L-X, Li S-T et al. Curcumin, a Potential Inhibitor of Up-regulation of TNF-alpha and IL-6 Induced by Palmitate in 3T3-L1 Adipocytes through NF-kappaB and JNK Pathway. Biomed Environ Sci. 2009;22(1):32–9. https://doi.org/10.1016/S0895-3988(09)60019-2.

  51. Shirasuna K, Takano H, Seno K, Ohtsu A, Karasawa T, Takahashi M, et al. Palmitic acid induces interleukin-1beta secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells. J Reprod Immunol. 2016;116:104–12. https://doi.org/10.1016/j.jri.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou BR, Zhang JA, Zhang Q, Permatasari F, Xu Y, Wu D, et al. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha via a NF-kappaB-dependent mechanism in HaCaT keratinocytes. Mediat Inflamm. 2013;2013:530429–11. https://doi.org/10.1155/2013/530429.

    Article  CAS  Google Scholar 

  53. Volpe CM, Abreu LF, Gomes PS, Gonzaga RM, Veloso CA, Nogueira-Machado JA. The production of nitric oxide, IL-6, and TNF-alpha in palmitate-stimulated PBMNCs is enhanced through hyperglycemia in diabetes. Oxid Medicine Cellular Longev. 2014;2014:479587–12. https://doi.org/10.1155/2014/479587.

    Article  CAS  Google Scholar 

  54. Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem. 2009;284(22):14809–18. https://doi.org/10.1074/jbc.M901488200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du J, Fan LM, Mai A, Li JM. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice. Br J Pharmacol. 2013;170(5):1064–77. https://doi.org/10.1111/bph.12336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45. https://doi.org/10.2337/diabetes.49.11.1939.

    Article  CAS  PubMed  Google Scholar 

  57. Maloney E, Sweet IR, Hockenbery DM, Pham M, Rizzo NO, Tateya S, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29(9):1370–5. https://doi.org/10.1161/ATVBAHA.109.188813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao Y, Gou L, Chen L, Zhong X, Zhang D, Zhu H, et al. NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory. Free Radic Biol Med. 2018;115:383–94. https://doi.org/10.1016/j.freeradbiomed.2017.12.017.

    Article  CAS  PubMed  Google Scholar 

  59. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular Pharmacol. 2018;100:1–19. https://doi.org/10.1016/j.vph.2017.05.005.

    Article  CAS  Google Scholar 

  60. Cha SH, Hwang Y, Kim KN, Jun HS. Palmitate induces nitric oxide production and inflammatory cytokine expression in zebrafish. Fish Shellfish Immun. 2018;79:163–7. https://doi.org/10.1016/j.fsi.2018.05.025.

    Article  CAS  Google Scholar 

  61. Ke J, Wei R, Yu F, Zhang J, Hong T. Liraglutide restores angiogenesis in palmitate-impaired human endothelial cells through PI3K/Akt-Foxo1-GTPCH1 pathway. Peptides. 2016;86:95–101. https://doi.org/10.1016/j.peptides.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Shan Y, Li Y, Luo X, Shi H. Palmitate impairs angiogenesis via suppression of cathepsin activity. Mol Med Rep. 2017;15(6):3644–50. https://doi.org/10.3892/mmr.2017.6463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen P, Liu H, Xiang H, Zhou J, Zeng Z, Chen R, et al. Palmitic acid induced autophagy increases reactive oxygen species via the Ca2+/PKCα/NOX4 pathway and impairs endothelial function in human umbilical vein endothelial cells. Exp Ther Med. 2019;17(4):2425–32. https://doi.org/10.3892/etm.2019.7269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saggu S, Sakeran MI, Zidan N, Tousson E, Mohan A, Rehman H. Ameliorating effect of chicory (Chichorium intybus L.) fruit extract against 4-tert-octylphenol induced liver injury and oxidative stress in male rats. Food Chem Toxicol. 2014;72:138–46. https://doi.org/10.1016/j.fct.2014.06.029.

    Article  CAS  PubMed  Google Scholar 

  65. Xiao H, Wang J, Yuan L, Xiao C, Wang Y, Liu X. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. J Agric Food Chem. 2013;61(7):1509–20. https://doi.org/10.1021/jf3050268.

    Article  CAS  PubMed  Google Scholar 

  66. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:2. https://doi.org/10.1186/1754-6834-3-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park CM, Jin KS, Lee YW, Song YS. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells. Eur J Pharmacol. 2011;660(2–3):454–9. https://doi.org/10.1016/j.ejphar.2011.04.007.

    Article  CAS  PubMed  Google Scholar 

  68. Gresele P, Pignatelli P, Guglielmini G, Carnevale R, Mezzasoma AM, Ghiselli A, et al. Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr. 2008;138(9):1602–8. https://doi.org/10.1093/jn/138.9.1602.

    Article  CAS  PubMed  Google Scholar 

  69. Klinge CM, Wickramasinghe NS, Ivanova MM, Dougherty SM. Resveratrol stimulates nitric oxide production by increasing estrogen receptor alpha-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB J. 2008;22(7):2185–97. https://doi.org/10.1096/fj.07-103366.

    Article  CAS  PubMed  Google Scholar 

  70. Kimbrough CW, Lakshmanan J, Matheson PJ, Woeste M, Gentile A, Benns MV, et al. Resveratrol decreases nitric oxide production by hepatocytes during inflammation. Surgery. 2015;158(4):1095–101; discussion 101. https://doi.org/10.1016/j.surg.2015.07.012.

    Article  PubMed  Google Scholar 

  71. Takahashi S, Uchiyama T, Toda K. Differential effect of resveratrol on nitric oxide production in endothelial f-2 cells. Biol Pharm Bull. 2009;32(11):1840–3.

    Article  CAS  PubMed  Google Scholar 

  72. Loaiza A, Carretta MD, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. Differential intracellular calcium influx, nitric oxide production, ICAM-1 and IL8 expression in primary bovine endothelial cells exposed to nonesterified fatty acids. BMC Vet Res. 2016;12(1):38. https://doi.org/10.1186/s12917-016-0654-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Lima TM, de Sa LL, Scavone C, Curi R. Fatty acid control of nitric oxide production by macrophages. FEBS Lett. 2006;580(13):3287–95. https://doi.org/10.1016/j.febslet.2006.04.091.

    Article  CAS  PubMed  Google Scholar 

  74. Barton M. Endothelial dysfunction and atherosclerosis: Endothelin receptor antagonists as novel therapeutics. Curr Hypertens Rep. 2000;2(1):84–91. https://doi.org/10.1007/s11906-000-0064-5.

    Article  CAS  PubMed  Google Scholar 

  75. Finch J, Conklin DJ. Air pollution-induced vascular dysfunction: potential role of endothelin-1 (ET-1) system. Cardiovasc Toxicol. 2016;16(3):260–75. https://doi.org/10.1007/s12012-015-9334-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kwok CF, Shih KC, Hwu CM, Ho LT. Linoleic acid and oleic acid increase the endothelin-1 binding and action in cultured rat aortic smooth muscle cells. Metabolism. 2000;49(11):1386–9. https://doi.org/10.1053/meta.2000.17719.

    Article  CAS  PubMed  Google Scholar 

  77. Park JY, Kim YM, Song HS, Park KY, Kim YM, Kim MS, et al. Oleic acid induces endothelin-1 expression through activation of protein kinase C and NF-kappa B. Biochem Biophys Res Commun. 2003;303(3):891–5. https://doi.org/10.1016/s0006-291x(03)00436-4.

    Article  CAS  PubMed  Google Scholar 

  78. Fayyaz S, Henkel J, Japtok L, Kramer S, Damm G, Seehofer D, et al. Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype. Diabetologia. 2014;57(2):373–82. https://doi.org/10.1007/s00125-013-3123-6.

    Article  CAS  PubMed  Google Scholar 

  79. Ishii M, Maeda A, Tani S, Akagawa M. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch Biochem Biophys. 2015;566:26–35. https://doi.org/10.1016/j.abb.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  80. Li HB, Yang YR, Mo ZJ, Ding Y, Jiang WJ. Silibinin improves palmitate-induced insulin resistance in C2C12 myotubes by attenuating IRS-1/PI3K/Akt pathway inhibition. Braz J Med Biol Res. 2015;48(5):440–6. https://doi.org/10.1590/1414-431X20144238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nieuwoudt S, Mulya A, Fealy CE, Martelli E, Dasarathy S, Naga Prasad SV, et al. In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Cell Physiol. 2017;313(5):C575–C83. https://doi.org/10.1152/ajpcell.00123.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peng Y, Sun Q, Park Y. Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway. J Funct Foods. 2019;59:8–15. https://doi.org/10.1016/j.jff.2019.05.020.

    Article  CAS  Google Scholar 

  83. Schlernitzauer A, Oiry C, Hamad R, Galas S, Cortade F, Chabi B, et al. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS One. 2013;8(11):e78788. https://doi.org/10.1371/journal.pone.0078788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li N, Zhao Y, Yue Y, Chen L, Yao Z, Niu W. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance. Biochem Biophys Res Commun. 2016;478(1):46–52. https://doi.org/10.1016/j.bbrc.2016.07.095.

    Article  CAS  PubMed  Google Scholar 

  85. Weidong C. Palmitate directly stimulates eNOS via AMPK and PI3-kinase activation in cultured endothelial cells (ECs). Diabetes. 2008; 68th scientific session.

  86. Carlomosti F, D'Agostino M, Beji S, Torcinaro A, Rizzi R, Zaccagnini G, et al. Oxidative stress-induced miR-200c disrupts the regulatory loop among SIRT1, FOXO1, and eNOS. Antioxid Redox Signal. 2017;27(6):328–44. https://doi.org/10.1089/ars.2016.6643.

    Article  CAS  PubMed  Google Scholar 

  87. Srinivasan VAR, Raghavan VA, Parthasarathy S. Biochemical basis and clinical consequences of glucolipotoxicity: A primer. Heart Fail Clin. 2012;(8, 4):501–11. https://doi.org/10.1016/j.hfc.2012.06.011.

  88. Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: role of resveratrol. Biochem Biophys Res Commun. 2010;393(1):66–72. https://doi.org/10.1016/j.bbrc.2010.01.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Horie K, Nanashima N, Maeda H. Phytoestrogenic effects of blackcurrant anthocyanins increased endothelial nitric oxide synthase (eNOS) expression in human endothelial cells and ovariectomized rats. Molecules. 2019;24(7). https://doi.org/10.3390/molecules24071259.

  90. Liu C, Wang W, Lin W, Ling W, Wang D. Established atherosclerosis might be a prerequisite for chicory and its constituent protocatechuic acid to promote endothelium-dependent vasodilation in mice. Mol Nutr Food Res. 2016;60(10):2141–50. https://doi.org/10.1002/mnfr.201600002.

    Article  CAS  PubMed  Google Scholar 

  91. Hernández-Perera O, Pérez-Sala D, Navarro-Antolín J, Sánchez-Pascuala R, Hernández G, Díaz C, et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest. 1998;101(12):2711–9. https://doi.org/10.1172/JCI1500.

    Article  PubMed  PubMed Central  Google Scholar 

  92. de Alwis N, Beard S, Mangwiro YT, Binder NK, Kaitu'u-Lino TJ, Brownfoot FC, et al. Pravastatin as the statin of choice for reducing pre-eclampsia-associated endothelial dysfunction. Pregnancy Hypertens. 2020;20:83–91. https://doi.org/10.1016/j.preghy.2020.03.004.

    Article  PubMed  Google Scholar 

  93. Mao Y, Wang J, Yu F, Li Z, Li H, Guo C, et al. Ghrelin protects against palmitic acid or lipopolysaccharide-induced hepatocyte apoptosis through inhibition of MAPKs/iNOS and restoration of Akt/eNOS pathways. Biomed Pharmacother. 2016;84:305–13. https://doi.org/10.1016/j.biopha.2016.09.043.

    Article  CAS  PubMed  Google Scholar 

  94. Laurindo FRM, Liberman M, Fernandes DC, Leite PF. Chapter 8 - Endothelium-dependent vasodilation: Nitric oxide and other mediators. In: Da Luz PL, Libby P, ACP C, FRM L, editors. Endothelium and Cardiovascular Diseases, Academic Press; 2018. p. 97–113. https://doi.org/10.1016/C2016-0-03197-2.

    Chapter  Google Scholar 

  95. Sena CM, Pereira AM, Seica R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta. 2013;1832(12):2216–31. https://doi.org/10.1016/j.bbadis.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Ali-Akbar Hasseli of the Institute of Biochemistry and Biophysics (IBB) for his help with fluorimeter and fluorescence microscope. This article is the product of the MSc thesis of the first author.

Funding

This work was financially supported by Tehran University of Medical Sciences and Health Services under Grant No. 95–02–30-32269.

Author information

Authors and Affiliations

Authors

Contributions

RA conceptualized the idea and performed the experiments; AN conceptualized the idea and wrote the paper; MBK provided technical assistance; AM assisted with statistical analysis; SA helped drafting the manuscript.

Corresponding author

Correspondence to Azin Nowrouzi.

Ethics declarations

Ethical approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahipour, R., Nowrouzi, A., Khalili, M.B. et al. Aqueous Cichorium intybus L. seed extract may protect against acute palmitate-induced impairment in cultured human umbilical vein endothelial cells by adjusting the Akt/eNOS pathway, ROS: NO ratio and ET-1 concentration. J Diabetes Metab Disord 19, 1045–1059 (2020). https://doi.org/10.1007/s40200-020-00603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00603-3

Keywords

Navigation