Skip to main content

Advertisement

Log in

Serum cytokine dependent hematopoietic cell linker (CLNK) as a predictor for the duration of illness in type 2 diabetes mellitus

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is an endocrine illness associated with various changes in the immune system and adaptor protein levels. Cytokine dependent hematopoietic cell linker (CLNK) is an adapter protein that regulates immune receptor signaling and acts as a regulator of the receptor signaling of T-cells and natural killer cells. The role of CLNK in T2DM is not studied previously. In the present study, serum CLNK level was measured and correlated with some sociodemographic and insulin resistance (IR) parameters. To achieve these goals, we measured CLNK level and insulin parameters (glucose, insulin, HbA1c, in addition to the calculation of the functions of IR (HOMA2IR), insulin sensitivity (HOMA%S), and beta-cell function (HOMA%B)) in 60 T2DM patients and 30 controls. The results indicated a significant increase (p < 0.05) in serum CLNK in patients group in comparison with the controls. Multivariate generalized linear model (GLM) analysis revealed no significant effect of age, BMI, and sex on the CLNK level. The results of tests for between-subjects showed that the CLNK affects diagnosis significantly (F = 7.445, p = 0.008, partial η2 = 0.081) and its effect is approximately the same as the effect of insulin (F = 8.107, p = 0.006, partial η2 = 0.087). The correlation study showed a highly significant positive correlation between CLNK and the duration of disease (rho = 0.420, p < 0.001). It can be concluded that the increase CLNK in T2DM revealing the role of the adaptor proteins level in the progression of the disease and may act as a predictor for diabetes complications, which deserves more investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.

    CAS  Google Scholar 

  2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    CAS  PubMed  Google Scholar 

  3. Hussain AM, Lafta RK. Burden of non-communicable diseases in Iraq after the 2003 war. Saudi Med J. 2019;40(1):72–8.

    PubMed  PubMed Central  Google Scholar 

  4. Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW, , et al. Mortality attributable to diabetes in 20–79 years old adults estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edn. Diabetes Res Clin Pract. 2019;2020:108086.

  5. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27(4):269–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37-.

    Google Scholar 

  7. Banerjee M, Saxena M. Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus. World J Diabetes. 2014;5(4):493.

    PubMed  PubMed Central  Google Scholar 

  8. Karstoft K, Pedersen BK. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol. 2016;94(2):146–50.

    CAS  PubMed  Google Scholar 

  9. Naidoo V, Naidoo M, Ghai M. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scand J Immunol. 2018;88(6):e12723.

    PubMed  Google Scholar 

  10. Eftekharian MM, Karimi J, Safe M, Sadeghian A, Borzooei S, Siahpoushi E. Investigation of the correlation between some immune system and biochemical indicators in patients with type 2 diabetes. Hum Antib. 2016;24(1–2):25–31.

    CAS  Google Scholar 

  11. van Diepen JA, Robben JH, Hooiveld GJ, Carmone C, Alsady M, Boutens L, et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia. 2017;60(7):1304–13.

    PubMed  PubMed Central  Google Scholar 

  12. Phosat C, Panprathip P, Chumpathat N, Prangthip P, Chantratita N, Soonthornworasiri N, et al. Elevated C-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: a cross-sectional study. BMC Endocr Disord. 2017;17(1):44.

    PubMed  PubMed Central  Google Scholar 

  13. Lainampetch J, Panprathip P, Phosat C, Chumpathat N, Prangthip P, Soonthornworasiri N, et al. Association of tumor necrosis factor alpha, Interleukin 6, and C-reactive protein with the risk of developing type 2 diabetes: A retrospective cohort study of Rural Thais. J Diabetes Res. 2019;2019:9051929.

    PubMed  PubMed Central  Google Scholar 

  14. Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15–16):1163–70.

    CAS  PubMed  Google Scholar 

  15. Verma NK, Tran T, Kelleher D. Adaptor protein regulation in immune signalling. Front Immunol. 2020;11:441.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jordan MS, Koretzky GA. Coordination of receptor signaling in multiple hematopoietic cell lineages by the adaptor protein SLP-76. Cold Spring Harb Perspect Biol. 2010;2(4):a002501-a.

    Google Scholar 

  17. Jordan MS, Singer AL, Koretzky GA. Adaptors as central mediators of signal transduction in immune cells. Nat Immunol. 2003;4(2):110–6.

    CAS  PubMed  Google Scholar 

  18. Dong Z, Cruz-Munoz M-E, Zhong M-C, Chen R, Latour S, Veillette A. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nat Immunol. 2009;10(9):973.

    CAS  PubMed  Google Scholar 

  19. Yu J, Devine S, Caligiuri MA, He S. Methods for mobilizing hematopoietic stem cells. Google Patents; 2018.

  20. Goitsuka R, Kanazashi H, Sasanuma H, Fujimura Y-i, Hidaka Y, Tatsuno A, et al. A BASH/SLP-76-related adaptor protein MIST/Clnk involved in IgE receptor-mediated mast cell degranulation. Int Immunol. 2000;12(4):573–80.

    CAS  PubMed  Google Scholar 

  21. Ishihara K, Hirano T. Molecular basis of the cell specificity of cytokine action. Biochim Biophys Acta (BBA) Mol Cell Res. 2002;1592(3):281–96.

  22. Cao MY, Davidson D, Yu J, Latour S, Veillette A. Clnk, a novel SLP-76–related adaptor molecule expressed in cytokine-stimulated hemopoietic cells. J Exp Med. 1999;190(10):1527–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hidano S, Sasanuma H, Ohshima K, Seino K-i, Kumar L, Hayashi K, et al. Distinct regulatory functions of SLP-76 and MIST in NK cell cytotoxicity and IFN-γ production. Int Immunol. 2008;20(3):345–52.

    CAS  PubMed  Google Scholar 

  24. Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J. 2015;38(6):484–95.

    PubMed  Google Scholar 

  25. Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87.

    PubMed  PubMed Central  Google Scholar 

  26. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res. 2016;167(1):228–56.

    CAS  PubMed  Google Scholar 

  27. Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598.

    PubMed  PubMed Central  Google Scholar 

  28. WHO. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006.

  29. Al-Hakeim HK, Abdulzahra MS. Correlation between glycated hemoglobin and homa indices in type 2 diabetes mellitus: Prediction of beta-cell function from glycated hemoglobin. J Med Biochem. 2015;34(2):191–9.

    PubMed  PubMed Central  Google Scholar 

  30. Sangeeta S. Metformin and pioglitazone in polycystic ovarian syndrome: a comparative study. J Obstet Gynecol India. 2012;62(5):551–6.

    CAS  Google Scholar 

  31. Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143.

    CAS  PubMed  Google Scholar 

  32. Al-Hakeim HK, Al-Mayali HH, Maes M. Cytokine dependent hematopoietic cell linker (CLNK) is highly elevated in blood transfusion dependent beta-thalassemia major patients. Available at SSRN 3369783. 2019.

  33. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr Physiol. 2018;9(1):1–58.

    PubMed  PubMed Central  Google Scholar 

  34. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–50.

    CAS  PubMed  Google Scholar 

  35. McGill AT, Stewart JM, Lithander FE, Strik CM, Poppitt SD. Relationships of low serum vitamin D3 with anthropometry and markers of the metabolic syndrome and diabetes in overweight and obesity. Nutr J. 2008;7:4.

    PubMed  PubMed Central  Google Scholar 

  36. Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem. 2009;115(4):176–90.

    CAS  PubMed  Google Scholar 

  37. van den Oever IAM, Raterman HG, Nurmohamed MT, Simsek S. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm. 2010;2010:792393-.

    PubMed  PubMed Central  Google Scholar 

  38. Badawi A, Klip A, Haddad P, Cole DE, Bailo BG, El-Sohemy A, et al. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab Syndr Obes. 2010;3:173–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang YE, Kim JM, Joung KH, Lee JH, You BR, Choi MJ, et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One. 2016;11(4):e0154003-e.

    Google Scholar 

  40. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    CAS  PubMed  Google Scholar 

  41. Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metabol. 2007;6(5):386–97.

    CAS  Google Scholar 

  42. Kan C, Silva N, Golden SH, Rajala U, Timonen M, Stahl D, et al. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care. 2013;36(2):480–9.

    PubMed  PubMed Central  Google Scholar 

  43. Fève B, Bastard J-P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(6):305.

    PubMed  Google Scholar 

  44. Aroor AR, McKarns S, DeMarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62(11):1543–52.

    CAS  PubMed  Google Scholar 

  45. Siragusa M, Fisslthaler B. Insulin Keeps PYK-ing on eNOS: Enhanced Insulin Receptor Signaling Induces Endothelial Dysfunction. Am Heart Assoc; 2017.

  46. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1):a009191.

    PubMed  PubMed Central  Google Scholar 

  47. Ji Q, Ding Y, Salomon AR. SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) N-terminal tyrosine residues regulate a dynamic signaling equilibrium involving feedback of proximal T-cell receptor (TCR) signaling. Mol Cell Proteomics. 2015;14(1):30–40.

    CAS  PubMed  Google Scholar 

  48. Boomer JS, Tan TH. Functional interactions of HPK1 with adaptor proteins. J Cell Biochem. 2005;95(1):34–44.

    CAS  PubMed  Google Scholar 

  49. Sasanuma H, Tatsuno A, Hidano S, Ohshima K, Matsuzaki Y, Hayashi K, et al. Dual function for the adaptor MIST in IFN-γ production by NK and CD4 + NKT cells regulated by the Src kinase Fgr. Blood. 2006;107(9):3647–55.

    CAS  PubMed  Google Scholar 

  50. Eizirik DL, Mandrup-Poulsen T. A choice of death–the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44(12):2115–33.

    CAS  PubMed  Google Scholar 

  51. Hostens K, Pavlovic D, Zambre Y, Ling Z, Van Schravendijk C, Eizirik DL, et al. Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Investig. 1999;104(1):67–72.

    CAS  PubMed  Google Scholar 

  52. Gupta S, Maratha A, Siednienko J, Natarajan A, Gajanayake T, Hoashi S, et al. Analysis of inflammatory cytokine and TLR expression levels in Type 2 Diabetes with complications. Sci Rep. 2017;7(1):7633.

    PubMed  PubMed Central  Google Scholar 

  53. Akujuru EE, Aprioku JS, Okerengwo AA. Circulatory levels of pro-inflammatory cytokines (IL-6 and IL-1β) and neutrophil-lymphocyte ratio (NLR) in diabetic patients in Nigerian population. Comp Clin Pathol. 2020;29(2):539–45.

    CAS  Google Scholar 

  54. Amin K, Qadr SH, Hussein RH, Ali KM, Rahman HS. Levels of cytokines and GADA in type I and II diabetic patients. Prim Care Diabetes. 2020;14(1):61–7.

    PubMed  Google Scholar 

  55. Li B, Lang N, Cheng Z-F. Serum levels of brain-derived neurotrophic factor are associated with diabetes risk, complications, and obesity: A cohort study from Chinese patients with type 2 diabetes. Mol Neurobiol. 2016;53(8):5492–9.

    CAS  PubMed  Google Scholar 

  56. Hsu HY, Chiu HY, Lin HT, Su FC, Lu CH, Kuo LC. Impacts of elevated glycaemic haemoglobin and disease duration on the sensorimotor control of hands in diabetes patients. Diab/Metab Res Rev. 2015;31(4):385–94.

    CAS  Google Scholar 

  57. Kobayashi Y, Suzuki R, Yasukawa K, Oba K, Yamauchi T, Yatomi Y, et al. Oxidized albumin in blood reflects the severity of multiple vascular complications in diabetes mellitus. Metab Open. 2020:100032.

  58. Latif H, Iqbal A, Rathore R, Butt NF. Correlation between Serum Uric Acid Level and Microalbuminuria in Type-2 Diabetic Nephropathy. Pak J Med Sci. 2017;33(6):1371–5.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the contributing authors have participated in the preparation of the manuscript.

Corresponding author

Correspondence to Suhaer Zeki Al-Fadhel.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Fadhel, S.Z., Al-Ghuraibawi, N.H., Mohammed Ali, D.M. et al. Serum cytokine dependent hematopoietic cell linker (CLNK) as a predictor for the duration of illness in type 2 diabetes mellitus. J Diabetes Metab Disord 19, 959–966 (2020). https://doi.org/10.1007/s40200-020-00588-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00588-z

Keywords

Navigation