Skip to main content

Advertisement

Log in

Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia occurring as a result of dysregulation and balance of various metabolic pathways. In recent years, circadian misalignment (due to altered sleep/wake, feeding/fasting cycles), has been intimately linked with the development of diabetes mellitus. Herein, we review our knowledge of oxidative stress, circadian rhythms control of metabolism, and the effects of its disruption on homeostasis while emphasizing the importance of melatonin, a nocturnally peaking, pineal hormone, as a potential therapeutic drug for the prevention and treatment of diabetes.

Methods

PubMed database was systematically searched for related articles and data from all types of studies, including clinical trials, review articles, and case reports were considered without limiting the study to one specific category.

Results

Experimental and epidemiological evidence indicate melatonin’s multifaceted effects in intermediary metabolism via resynchronization of the circadian rhythms and its deficiency is associated with metabolic derangements. As a chronobiotic, it cures insomnia and sleep disorders caused by shift work or jet lag. The antagonistic relationship between melatonin and insulin highlights its influence in regulating insulin secretion, its action, and melatonin treatment successfully improved glucose homeostasis, energy balance, and overall health in diabetes mellitus. Melatonin’s cytoprotective role as an antioxidant and free radical scavenger, proved useful in combating oxidative stress, preserving beta-cell function, and influencing the development of diabetic complications.

Conclusion

The therapeutic application of melatonin as a chronobiotic and cytoprotective agent is of promising significance in diabetes mellitus. Future investigations are encouraged to fully explore the efficacy of this ubiquitous molecule in various metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Pubmed database.

[https://www.ncbi.nlm.nih.gov/pubmed].

References

  1. World Health Organization. Diabetes 2017. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes

  2. Zhang PY. Cardiovascular disease in diabetes. Eur Rev Med Pharmacol Sci. 2014 Aug 1;18(15):2205–14 https://scholar.google.com/scholar_lookup?journal=Eur+Rev+Med+Pharmacol+Sci&title=Cardiovascular+disease+in+diabetes&author=PY+Zhang&volume=18&issue=15&publication_year=2014&pages=2205-2214&pmid=25070828&.

  3. Flaxman SR, Bourne RR, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. The Lancet Global Health. 2017;5(12):e1221–34 https://scholar.google.com/scholar_lookup?journal=Lancet+Glob+Health&title=Global+causes+of+blindness+and+distance+vision+impairment+1990-2020:+A+systematic+review+and+meta-analysis&author=SR+Flaxman&author=RRA+Bourne&author=S+Resnikoff&author=P+Ackland&author=T+Braithwaite&volume=5&publication_year=2017&pages=e1221-34&pmid=29032195&.

    Article  Google Scholar 

  4. Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxidative medicine and cellular longevity. 2013 Apr 24;2013 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655656/.

  5. Sulaiman MK. Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetology & metabolic syndrome. 2019 Dec 1;11(1):7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343294/, https://scholar.google.com/scholar_lookup?journal=Diabetol.+Metab.+Syndr.&title=Diabetic+nephropathy:+recent+advances+in+pathophysiology+and+challenges+in+dietary+management.&author=M.+K.+Sulaiman&volume=11&issue=7&publication_year=2019&pmid=30679960&doi=10.1186/s13098-019-0403-4&.

  6. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology. 2018 Feb;14(2):88. https://scholar.google.com/scholar_lookup?journal=Nature+Reviews+Endocrinology&title=Global+aetiology+and+epidemiology+of+type+2+diabetes+mellitus+and+its+complications&author=Y+Zheng&author=SH+Ley&author=FB+Hu&volume=14&issue=2&publication_year=2018&pages=88-98&doi=10.1038/nrendo.2017.151&.

  7. American Diabetes Association. Economic costs of diabetes in the US in 2017. Diabetes care. 2018 May 1;41(5):917–28. https://scholar.google.com/scholar_lookup?journal=Diab+Care&title=Economic+cost+of+diabetes+in+the+U.S.+in+2017&volume=41&publication_year=2018&pages=917-928&doi=10.2337/dci18-0007&.

  8. Mahmood D. Pleiotropic effects of Melatonin. Drug research. 2019 Feb;69(02):65–74 https://scholar.google.com/scholar_lookup?journal=Drug+Res+(Stuttg)&title=Pleiotropic+Efects+of+Melatonin&author=D+Mahmood&volume=69&issue=2&publication_year=2019&pages=65-74&pmid=30060265&doi=10.1055/a-0656-6643&.

  9. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin—A pleiotropic, orchestrating regulator molecule. Progress in neurobiology. 2011 Mar 1;93(3):350–84. https://scholar.google.com/scholar_lookup?journal=Prog+Neurobiol&title=Melatonin%E2%80%93a+pleiotropic,+orchestrating+regulator+molecule&volume=93&issue=3&publication_year=2011&pages=350-384&pmid=21193011&.

  10. Hardeland R, Pandi-Perumal SR, Cardinali DP. Melatonin. The international journal of biochemistry & cell biology. 2006 Mar 1;38(3):313–6. https://scholar.google.com/scholar_lookup?journal=Int+J+Biochem+Cell+Biol&title=Melatonin&author=R+Hardeland&author=S+Pandi-Perumal&author=D+Cardinali&volume=38&publication_year=2006&pages=313-6&pmid=16219483&.

  11. Peschke E, Fauteck JD, Mußhoff U, Schmidt F, Beckmann A, Peschke D. Evidence for a melatonin receptor within pancreatic islets of neonate rats: functional, autoradiographic, and molecular investigations. Journal of pineal research. 2000 Apr;28(3):156–64. https://scholar.google.com/scholar_lookup?journal=J.+Pineal+Res.&title=Evidence+for+a+melatonin+receptor+within+pancreatic+islets+of+neonate+rats:+Functional,+autoradiographic,+and+molecular+investigations&author=E.+Peschke&author=J.D.+Fauteck&author=U.+Musshoff&volume=28&publication_year=2000&pages=156-164&pmid=10739302&doi=10.1034/j.1600-079X.2001.280305.x&.

  12. PJ L, Sanchez N, JM G. Melatonin and glucose metabolism: clinical relevance. Current pharmaceutical design. 2014 Sep 1;20(30):4841–53. https://scholar.google.com/scholar_lookup?journal=Current+Pharmaceutical+Design&title=Melatonin+and+glucose+metabolism:+Clinical+relevance&volume=20&publication_year=2014&pages=4841-4853&pmid=24251676&.

  13. Peschke E, Frese T, Chankiewitz E, Peschke D, Preiss U, Schneyer U, Spessert R, Mühlbauer E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. Journal of pineal research. 2006 Mar;40(2):135–43. https://scholar.google.com/scholar_lookup?journal=Journal+of+Pineal+Research&title=Diabetic+Goto+Kakizaki+rats+as+well+as+type+2+diabetic+patients+show+a+decreased+diurnal+serum+melatonin+level+and+an+increased+pancreatic+melatonin%E2%80%90receptor+status&volume=40&publication_year=2006&pages=135-143&pmid=16441550&doi=10.1111/j.1600-079X.2005.00287.x&.

  14. Lima FB, Machado UF, Bartol I, Seraphim PM, Sumida DH, Moraes SM, Hell NS, Okamoto MM, Saad MJ, Carvalho CR, Cipolla-Neto J. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. American Journal of Physiology-Endocrinology and Metabolism. 1998 Dec 1;275(6):E934–41. https://scholar.google.com/scholar_lookup?journal=Am+J+Physiol.&title=Pinealectomy+causes+glucose+intolerance+and+decreases+adipose+cell+responsiveness+to+insulin+in+rats&author=FB+Lima&author=UF+Machado&author=I+Bartol&author=PM+Seraphim&author=DH+Sumida&volume=275&issue=6+Pt+1&publication_year=1998&pages=E934-41&pmid=9843734&doi=10.1152/ajpendo.1998.275.6.E934&.

  15. Zephy D, Ahmad J. Type 2 diabetes mellitus: role of melatonin and oxidative stress. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2015 Apr 1;9(2):127–31. https://scholar.google.com/scholar_lookup?journal=Diabetes+Metab+Syndr.&title=Type+2+diabetes+mellitus:+role+of+melatonin+and+oxidative+stress&author=D+Zephy&author=J+Ahmad&volume=9&publication_year=2015&pages=127-31&pmid=25450812&doi=10.1016/j.dsx.2014.09.018&.

  16. Yavuz O, Cam M, Bukan N, Guven A, Silan F. Protective effect of melatonin on β-cell damage in streptozotocin-induced diabetes in rats. acta histochemica. 2003 Jan 1;105(3):261–6. https://scholar.google.com/scholar_lookup?journal=Acta+Histochem&title=Protective+effect+of+melatonin+on+%CE%B2-cell+damage+in+streptozotocin-induced+diabetes+in+rats&author=O+Yavuz&author=M+Camb&author=N+Bukanc&author=A+Guvenb&author=F+Siland&volume=105&publication_year=2003&pages=261-266&pmid=13677620&doi=10.1078/0065-1281-00711&.

  17. Cardinali DP. Melatonin: clinical perspectives in neurodegeneration. Frontiers in endocrinology. 2019;10:480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646522/, https://scholar.google.com/scholar_lookup?journal=Front.+Endocrinol.&title=Melatonin:+clinical+perspectives+in+neurodegeneration.&author=D.+P.+Cardinali&volume=10&issue=480&publication_year=2019b&doi=10.3389/fendo.2019.00480&.

  18. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal. 2016 Sep 1;24(5):547–53, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059829/, https://scholar.google.com/scholar_lookup?journal=Saudi+Pharm.+J.&title=Diabetes+mellitus+and+oxidative+stress-A+concise+review&author=U.+Asmat&author=K.+Abad&author=K.+Ismail&volume=24&publication_year=2016&pages=547-553&pmid=27752226&doi=10.1016/j.jsps.2015.03.013&.

  19. Nishida S, Segawa T, Murai I, Nakagawa S. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Δ-5 desaturase activity. Journal of pineal research. 2002 Jan;32(1):26–33. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Long-term+melatonin+administration+reduces+hyperinsulinemia+and+improves+the+altered+fatty-acid+compositions+in+type+2+diabetic+rats+via+the+restoration+of+delta-5+desaturase+activity&author=S+Nishida&author=T+Segawa&author=I+Murai&author=S+Nakagawa&volume=32&publication_year=2002&pages=26-33&pmid=11841597&.

  20. Nishida S. Metabolic effects of melatonin on odative stress and dbetes mellitus. Endocrine. 2005 Jul 1;27(2):131–5. https://scholar.google.com/scholar_lookup?journal=Endocrine&title=Metabolic+effects+of+melatonin+on+oxidative+stress+and+diabetes+mellitus&author=S+Nishida&volume=27&publication_year=2005&pages=131-136&pmid=16217126&doi=10.1385/ENDO:27:2:131&.

  21. Zee PC, Attarian H, Videnovic A. Circadian rhythm abnormalities. Continuum: Lifelong Learning in Neurology. 2013 Feb;19(1 Sleep Disorders):132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654533/, https://scholar.google.com/scholar_lookup?journal=CONTINUUM:+Lifelong+Learning+in+Neurology&title=Circadian+Rhythm+Abnormalities&author=Phyllis+C.+Zee&author=Hrayr+Attarian&author=Aleksandar+Videnovic&volume=19&issue=1&publication_year=2013&pages=132-147&pmid=23385698&.

  22. Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell. 2008 Sep 5;134(5):728–42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760165/, https://scholar.google.com/scholar_lookup?journal=Cell&title=The+meter+of+metabolism&author=CB+Green&author=JS+Takahashi&author=J+Bass&volume=134&publication_year=2008&pages=728-742&pmid=18775307&.

  23. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiological reviews. 2010 Jul;90(3):1063–102. https://scholar.google.com/scholar_lookup?journal=Physiol+Rev.&title=Physiology+of+Circadian+Entrainment.&author=DA+Golombek&author=RE+Rosenstein&volume=90&issue=3&publication_year=2010&pages=1063-102&pmid=20664079&doi=10.1152/physrev.00009.2009&.

  24. Froy O. Metabolism and circadian rhythms—implications for obesity. Endocrine reviews. 2010 Feb 1;31(1):1–24. https://scholar.google.com/scholar_lookup?journal=Endocr+Rev&title=Metabolism+and+circadian+rhythms%2D%2Dimplications+for+obesity&author=O+Froy&volume=31&publication_year=2010&pages=1-24&pmid=19854863&.

  25. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010 Dec 3;330(6009):1349–54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756146/, https://scholar.google.com/scholar_lookup?journal=Science&title=Circadian+integration+of+metabolism+and+energetics&author=J+Bass&author=JS+Takahashi&volume=330&publication_year=2010&pages=1349-1354&pmid=21127246&doi=10.1126/science.1195027&.

  26. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature reviews genetics. 2008 Oct;9(10):764–75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758473/, https://scholar.google.com/scholar_lookup?journal=Nat+Rev+Genet&title=The+genetics+of+mammalian+circadian+order+and+disorder:+implications+for+physiology+and+disease&author=JS+Takahashi&author=H-K+Hong&author=CH+Ko&author=EL+McDearmon&volume=9&issue=10&publication_year=2008&pages=764-775&pmid=18802415&doi=10.1038/nrg2430&.

  27. Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock. InCircadian clocks 2013 (pp. 3–27). Springer, Berlin, Heidelberg. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762864/, https://scholar.google.com/scholar_lookup?journal=Handb+Exp+Pharmacol&title=Molecular+components+of+the+Mammalian+circadian+clock&author=ED+Buhr&author=JS+Takahashi&volume=217&publication_year=2013&pages=3-27&.

  28. Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD. Impact of nutrients on circadian rhythmicity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2015 Mar 1;308(5):R337–50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346762/, https://scholar.google.com/scholar_lookup?journal=Am+J+Physiol+Regul+Integr+Comp+Physiol&title=Impact+of+nutrients+on+circadian+rhythmicity&author=JE+Oosterman&author=A+Kalsbeek&author=SE+la+Fleur&author=DD+Belsham&volume=308&publication_year=2015&pages=R337-R350&pmid=25519730&doi=10.1152/ajpregu.00322.2014&.

  29. Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. Journal of pineal research. 2015 Aug;59(1):1–23. https://scholar.google.com/scholar_lookup?journal=Journal+of+Pineal+Research&title=Experimental+and+clinical+aspects+of+melatonin+and+clock+genes+in+diabetes&author=E.+Peschke&author=I.+B%C3%A4hr&author=E.+M%C3%BChlbauer&volume=59&issue=1&publication_year=2015&pages=1-23&pmid=25904189&doi=10.1111/jpi.12240&.

  30. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005 May 13;308(5724):1043–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764501/, https://scholar.google.com/scholar_lookup?journal=Science&title=Obesity+and+metabolic+syndrome+in+circadian+Clock+mutant+mice&author=FW+Turek&author=C+Joshu&author=A+Kohsaka&author=E+Lin&author=G+Ivanova&volume=308&publication_year=2005&pages=1043-1045&pmid=15845877&doi=10.1126/science.1108750&.

  31. Qian J, Yeh B, Rakshit K, Colwell CS, Matveyenko AV. Circadian disruption and diet-induced obesity synergize to promote development of β-cell failure and diabetes in male rats. Endocrinology. 2015 Dec 1;156(12):4426–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655211/, https://scholar.google.com/scholar_lookup?journal=Endocrinology&title=Circadian+disruption+and+diet-induced+obesity+synergize+to+promote+development+of+%CE%B2-cell+failure+and+diabetes+in+male+rats&author=J+Qian&author=B+Yeh&author=K+Rakshit&author=CS+Colwell&author=AV+Matveyenko&volume=156&publication_year=2015&pages=4426-4436&pmid=26348474&doi=10.1210/en.2015-1516&.

  32. Reddy AB, O’Neill JS. Healthy clocks, healthy body, healthy mind. Trends in cell biology. 2010 Jan 1;20(1):36–44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808409/, https://scholar.google.com/scholar_lookup?journal=Trends+Cell+Biol&title=Healthy+clocks,+healthy+body,+healthy+mind&author=AB+Reddy&author=JS+O%E2%80%99Neill&volume=20&publication_year=2010&pages=36-44&pmid=19926479&.

  33. Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Molecular metabolism. 2014 Jul 1;3(4):372–83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060304/, https://scholar.google.com/scholar_lookup?journal=Mol.+Metab.&title=Circadian+control+of+glucose+metabolism&author=A.+Kalsbeek&author=S.+La+Fleur&author=E.+Fliers&volume=3&publication_year=2014&pages=372-383&pmid=24944897&doi=10.1016/j.molmet.2014.03.002&.

  34. Jha PK, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Molecular and cellular endocrinology. 2015 Dec 15;418:74–88 https://scholar.google.com/scholar_lookup?journal=Mol+Cell+Endocrinol&title=Circadian+rhythms+in+glucose+and+lipid+metabolism+in+nocturnal+and+diurnal+mammals&volume=418&publication_year=2015&pages=74-88&pmid=25662277&.

  35. Bo S, Musso G, Beccuti G, Fadda M, Fedele D, Gambino R, Gentile L, Durazzo M, Ghigo E, Cassader M. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS One. 2014;9(9). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177396/, https://scholar.google.com/scholar_lookup?journal=PLoS+One&title=Consuming+more+of+daily+caloric+intake+at+dinner+predisposes+to+obesity.+A+6-year+population-based+prospective+cohort+study&author=S+Bo&author=G+Musso&author=G+Beccuti&author=M+Fadda&author=D+Fedele&volume=9&publication_year=2014&pages=e108467&pmid=25250617&.

  36. Morris CJ, Purvis TE, Mistretta J, Scheer FA. Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. The Journal of Clinical Endocrinology & Metabolism. 2016 Mar 1;101(3):1066–74. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803172/, https://scholar.google.com/scholar_lookup?journal=J+Clin+Endocrinol+Metab&title=Effects+of+the+Internal+Circadian+System+and+Circadian+Misalignment+on+Glucose+Tolerance+in+Chronic+Shift+Workers&author=CJ+Morris&author=TE+Purvis&author=J+Mistretta&author=FA+Scheer&volume=101&publication_year=2016&pages=1066-1074&pmid=26771705&.

  37. Qian J, Block GD, Colwell CS, Matveyenko AV. Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats. Diabetes. 2013 Oct 1;62(10):3469–78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781472/.

  38. Sadacca LA, Lamia KA, Delemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 2011 Jan 1;54(1):120–4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995870/, https://scholar.google.com/scholar_lookup?journal=Diabetologia&title=An+intrinsic+circadian+clock+of+the+pancreas+is+required+fornormal+insulin+release+and+glucose+homeostasis+in+mice&author=LA+Sadacca&author=KA+Lamia&author=AS+deLemos&author=B+Blum&author=CJ+Weitz&volume=54&issue=1&publication_year=2011&pages=120-124&pmid=20890745&.

  39. Gale JE, Cox HI, Qian J, Block GD, Colwell CS, Matveyenko AV. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. Journal of biological rhythms. 2011 Oct;26(5):423–33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359760/, https://scholar.google.com/scholar_lookup?journal=J.+Biol.+Rhythms&title=Disruption+of+circadian+rhythms+accelerates+development+of+diabetes+through+pancreatic+beta-cell+loss+and+dysfunction&author=JE+Gale&volume=26&publication_year=2011&pages=423-433&pmid=21921296&doi=10.1177/0748730411416341&.

  40. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. New England Journal of Medicine. 1988 May 12;318(19):1231–9. https://scholar.google.com/scholar_lookup?journal=N+Engl+J+Med&title=Abnormal+patterns+of+insulin+secretion+in+non-insulin-dependentdiabetes+mellitus&author=KS+Polonsky&author=BD+Given&author=LJ+Hirsch&author=H+Tillil&author=ET+Shapiro&volume=318&issue=19&publication_year=1988&pages=1231-1239&pmid=3283554&.

  41. Gil-Lozano M, Mingomataj EL, Wu WK, Ridout SA, Brubaker PL. Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell. Diabetes. 2014 Nov 1;63(11):3674–85. https://scholar.google.com/scholar_lookup?journal=Diabetes&title=Circadian+secretion+of+the+intestinal+hormone+GLP-1+by+the+rodent+L+cell&author=M+Gil-Lozano&author=EL+Mingomataj&author=WK+Wu&author=SA+Ridout&author=PL+Brubaker&volume=63&publication_year=2014&pages=3674-3685&pmid=24789917&.

  42. Gil-Lozano M, Wu WK, Martchenko A, Brubaker PL. High-fat diet and palmitate alter the rhythmic secretion of glucagon-like peptide-1 by the rodent L-cell. Endocrinology. 2016 Feb 1;157(2):586–99. https://scholar.google.com/scholar_lookup?journal=Endocrinology&title=High-Fat+Diet+and+Palmitate+Alter+the+Rhythmic+Secretion+of+Glucagon-Like+Peptide-1+by+the+Rodent+L-cell&author=M+Gil-Lozano&author=WK+Wu&author=A+Martchenko&author=PL+Brubaker&volume=157&publication_year=2016&pages=586-599&pmid=26646204&.

  43. Dyar KA, Ciciliot S, Wright LE, Biensø RS, Tagliazucchi GM, Patel VR, Forcato M, Paz MI, Gudiksen A, Solagna F, Albiero M. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular metabolism. 2014 Feb 1;3(1):29–41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929910/, https://scholar.google.com/scholar_lookup?journal=Mol.+Metab.&title=Muscle+insulin+sensitivity+and+glucose+metabolism+are+controlled+by+the+intrinsic+muscle+clock.&author=K.+A.+Dyar&author=S.+Ciciliot&author=L.+E.+Wright&author=R.+S.+Bienso&author=G.+M.+Tagliazucchi&volume=3&publication_year=2014&pages=29-41&pmid=24567902&doi=10.1016/j.molmet.2013.10.005&.

  44. Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-Corsi P. PER2 controls lipid metabolism by direct regulation of PPARγ. Cell metabolism. 2010 Nov 3;12(5):509–20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103168/, https://scholar.google.com/scholar_lookup?journal=Cell+Metab&title=PER2+controls+lipid+metabolism+by+direct+regulation+of+PPAR%CE%B3&author=B+Grimaldi&author=MM+Bellet&author=S+Katada&author=G+Astarita&author=J+Hirayama&volume=12&publication_year=2010&pages=509-520&pmid=21035761&.

  45. Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. American Journal of Physiology-Endocrinology and Metabolism. 2010 Oct;299(4):E601–6. https://scholar.google.com/scholar_lookup?journal=Am+J+Physiol+Endocrinol+Metab&title=A+critical+appraisal+of+the+prevalence+and+metabolic+significance+of+brown+adipose+tissue+in+adult+humans&author=P+Lee&author=JR+Greenfield&author=KK+Ho&author=MJ+Fulham&volume=299&publication_year=2010&pages=E601-E606&pmid=20606075&.

  46. Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian rhythm and the gut microbiome. InInternational review of neurobiology 2016 Jan 1 (Vol. 131, pp. 193-205). Academic Press. https://scholar.google.com/scholar_lookup?journal=Int+Rev+Neurobiol&title=Circadian+Rhythm+and+the+Gut+Microbiome&author=RM+Voigt&author=CB+Forsyth&author=SJ+Green&author=PA+Engen&author=A+Keshavarzian&volume=131&publication_year=2016&pages=193-205&pmid=27793218&.

  47. Munoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinología y Nutrición (English Edition). 2016 Dec 1;63(10):560–8. https://scholar.google.com/scholar_lookup?journal=Endocrinol+Nutr&title=Gut+microbiota+and+type+2+diabetes+mellitus&author=A+Mu%C3%B1oz-Garach&author=C+Diaz-Perdigones&author=FJ+Tinahones&volume=63&publication_year=2016&pages=560-568&pmid=27633134&.

  48. Ando H, Takamura T, Matsuzawa-Nagata N, Shima KR, Eto T, Misu H, Shiramoto M, Tsuru T, Irie S, Fujimura A, Kaneko S. Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia. 2009 Feb 1;52(2):329–35. https://scholar.google.com/scholar_lookup?journal=Diabetologia&title=Clock+gene+expression+in+peripheral+leucocytes+of+patients+with+type+2+diabetes&author=H+Ando&author=T+Takamura&author=N+Matsuzawa-Nagata&author=KR+Shima&author=T+Eto&volume=52&publication_year=2009&pages=329-335&pmid=18974966&doi=10.1007/s00125-008-1194-6&.

  49. Zhu L, Zee PC. Circadian rhythm sleep disorders. Neurologic clinics. 2012 Nov 1;30(4):1167–91. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523094/, https://scholar.google.com/scholar_lookup?journal=Neurol.+Clin.&title=Circadian+rhythm+sleep+disorders&author=L.+Zhu&author=P.C.+Zee&volume=30&publication_year=2012&pages=1167-1191&pmid=23099133&doi=10.1016/j.ncl.2012.08.011&.

  50. Reutrakul S, Thakkinstian A, Anothaisintawee T, Chontong S, Borel AL, Perfect MM, Janovsky CC, Kessler R, Schultes B, Harsch IA, van Dijk M. Sleep characteristics in type 1 diabetes and associations with glycemic control: systematic review and meta-analysis. Sleep medicine. 2016 Jul 1;23:26–45. https://scholar.google.com/scholar_lookup?journal=Sleep+Med&title=Sleep+characteristics+in+type+1+diabetes+and+associations+with+glycemic+control:+systematic+review+and+meta-analysis&volume=23&publication_year=2016&pages=26-45&pmid=27692274&.

  51. Yunzhao T, Daiqing L, Min Y, Yanjuan Z, Chenguang L, Zhenhuan J, Ping Y, Zhu L, Hongna S, Changlin N. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chinese medical journal. 2014 Oct 20;127(20):3543–7. https://scholar.google.com/scholar_lookup?journal=Chin+Med+J+(Engl)&title=Interaction+of+sleep+quality+and+sleep+duration+on+glycemic+control+in+patients+with+type+2+diabetes+mellitus&author=Y+Tang&author=L+Meng&author=D+Li&author=M+Yang&author=Y+Zhu&volume=127&publication_year=2014&pages=3543-3547&pmid=25316226&.

  52. Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, Wang W, Czeisler CA, Shea SA. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Science translational medicine. 2012 Apr 11;4(129):129ra43 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678519/.

  53. Lou P, Chen P, Zhang L, Zhang P, Yu J, Zhang N, Wu H, Zhao J. Relation of sleep quality and sleep duration to type 2 diabetes: a population-based cross-sectional survey. BMJ open. 2012 Jan 1;2(4):e000956. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400660/, https://scholar.google.com/scholar_lookup?journal=BMJ&title=Relation+of+sleep+quality+and+sleep+duration+to+type+2+diabetes:+A+population-based+cross-sectional+survey&author=P.+Lou&author=P.+Chen&author=L.+Zhang&author=P.+Zhang&author=J.+Yu&volume=2&publication_year=2012&pages=e000956&pmid=22872722&doi=10.1136/bmjopen-2012-000956&.

  54. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS medicine. 2011 Dec;8(12). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232220/, https://scholar.google.com/scholar_lookup?journal=PLoS+Med&title=Rotating+night+shift+work+and+risk+of+type+2+diabetes:+two+prospective+cohort+studies+in+women&author=A+Pan&author=ES+Schernhammer&author=Q+Sun&author=FB+Hu&volume=8&publication_year=2011&pages=e1001141&pmid=22162955&doi=10.1371/journal.pmed.1001141&.

  55. Morris CJ, Yang JN, Scheer FA. The impact of the circadian timing system on cardiovascular and metabolic function. InProgress in brain research 2012 Jan 1 (Vol. 199, pp. 337–358). Elsevier. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704149/, https://scholar.google.com/scholar_lookup?journal=Prog+Brain+Res&title=The+impact+of+the+circadian+timing+system+on+cardiovascular+and+metabolic+function&volume=199&publication_year=2012&pages=337-358&pmid=22877674&.

  56. Tan X, van Egmond L, Chapman CD, Cedernaes J, Benedict C. Aiding sleep in type 2 diabetes: therapeutic considerations. The Lancet Diabetes & Endocrinology. 2018 Jan 1;6(1):60–8. https://scholar.google.com/scholar_lookup?journal=Lancet+Diabetes+Endocrinol.&title=Aiding+sleep+in+type+2+diabetes:+Therapeutic+considerations&author=X.+Tan&author=L.+van+Egmond&author=C.D.+Chapman&author=J.+Cedernaes&author=C.+Benedict&volume=6&publication_year=2018&pages=60-68&pmid=28844889&doi=10.1016/S2213-8587(17)30233-4&.

  57. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010 Jul;466(7306):627–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920067/, https://scholar.google.com/scholar_lookup?journal=Nature&title=Disruption+of+the+clock+components+CLOCK+and+BMAL1+leads+to+hypoinsulinaemia+and+diabetes&author=B+Marcheva&author=KM+Ramsey&author=ED+Buhr&author=Y+Kobayashi&author=H+Su&volume=466&publication_year=2010&pages=627-631&pmid=20562852&.

  58. Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC, Farrall M, Gauguier D. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proceedings of the National Academy of Sciences. 2007 Sep 4;104(36):14412–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1958818/, https://scholar.google.com/scholar_lookup?journal=Proc+Natl+Acad+Sci+USA&title=Aryl+hydrocarbon+receptor+nuclear+translocator-like+(BMAL1)+is+associated+with+susceptibility+to+hypertension+and+type+2+diabetes&author=PY+Woon&author=PJ+Kaisaki&author=J+Bragan%C3%A7a&author=MT+Bihoreau&author=JC+Levy&volume=104&publication_year=2007&pages=14412-14417&pmid=17728404&.

  59. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spégel P, Bugliani M, Saxena R, Fex M, Pulizzi N, Isomaa B. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nature genetics. 2009 Jan;41(1):82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725650/, https://scholar.google.com/scholar_lookup?journal=Nat+Genet&title=Common+variant+in+MTNR1B+associated+with+increased+risk+of+type+2+diabetes+and+impaired+early+insulin+secretion&author=V+Lyssenko&author=CL+Nagorny&author=MR+Erdos&author=N+Wierup&author=A+Jonsson&volume=41&publication_year=2009&pages=82-88&pmid=19060908&.

  60. Staiger H, Machicao F, Schäfer SA, Kirchhoff K, Kantartzis K, Guthoff M, Silbernagel G, Stefan N, Häring HU, Fritsche A. Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine β-cell function. PloS one. 2008;3(12). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597741/, https://scholar.google.com/scholar_lookup?journal=PLoS+One&title=Polymorphisms+within+the+novel+type+2+diabetes+risk+locus+MTNR1B+determine+%CE%B2-cell+function&author=H.+Staiger&author=F.+Machicao&author=S.+A.+Sch%C3%A4fer&volume=3&issue=12,+article+e3962&publication_year=2008&pmid=19088850&doi=10.1371/journal.pone.0003962&.

  61. Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. Journal of Physiology-Paris. 2011 Dec 1;105(4–6):170–82. https://scholar.google.com/scholar_lookup?journal=J+Physiol+Paris&title=Melatonin:+both+master+clock+output+and+internal+time%E2%80%90giver+in+the+circadian+clocks+network&volume=105&issue=4%E2%80%936&publication_year=2011&pages=170-182&pmid=21914478&.

  62. Espino J, Pariente JA, Rodríguez AB. Role of melatonin on diabetes-related metabolic disorders. World journal of diabetes. 2011 Jun 15;2(6):82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158876/ .

  63. Peschke E, Bähr I, Mühlbauer E. Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. International journal of molecular sciences. 2013 Apr;14(4):6981–7015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645673/ .

  64. Zibolka J, Mühlbauer E, Peschke E. Melatonin influences somatostatin secretion from human pancreatic δ-cells via MT 1 and MT 2 receptors. Journal of pineal research. 2015 Mar;58(2):198–209 https://scholar.google.com/scholar_lookup?journal=J.+Pineal+Res.&title=Melatonin+influences+somatostatin+secretion+from+human+pancreatic+%CE%B4-cells+via+MT1+and+MT2+receptors&author=J.+Zibolka&author=E.+M%C3%BChlbauer&author=E.+Peschke&volume=58&publication_year=2015&pages=198-209&pmid=25585597&doi=10.1111/jpi.12206&.

  65. Diaz B, Blazquez E. Effect of pinealectomy on plasma glucose, insulin, and glucagon levels in the rat. Hormone and metabolic research. 1986 Apr;18(04):225–9. https://scholar.google.com/scholar_lookup?journal=Horm.+Metab.+Res.&title=Effect+of+pinealectomy+on+plasma+glucose,+insulin+and+glucagon+levels+in+the+rat&author=B.+Diaz&author=E.+Bl%C3%A1zquez&volume=18&publication_year=1986&pages=225-229&pmid=3519410&doi=10.1055/s-2007-1012279&.

  66. Champney TH, Brainard GC, Richardson BA, Reiter RJ. Experimentally-induced diabetes reduces nocturnal pineal melatonin content in the Syrian hamster. Comparative biochemistry and physiology. A, Comparative physiology. 1983;76(1):199–201 https://scholar.google.com/scholar_lookup?journal=Comp+Biochem+Physiol+A+Comp+Physiol&title=Experimentally-induced+diabetes+reduces+nocturnal+pineal+melatonin+content+in+the+Syrian+hamster&author=TH+Champney&author=GC+Brainard&author=BA+Richardson&author=RJ+Reiter&volume=76&publication_year=1983&pages=199-201&pmid=6138184&.

  67. Frese T, Bach AG, Mühlbauer E, Pönicke K, Brömme HJ, Welp A, Peschke E. Pineal melatonin synthesis is decreased in type 2 diabetic Goto–Kakizaki rats. Life sciences. 2009 Sep 23;85(13–14):526–33. https://scholar.google.com/scholar_lookup?journal=Life+Sci&title=Pineal+melatonin+synthesis+is+decreased+in+type+2+diabetic+Goto-Kakizaki+rats&author=T+Frese&author=AG+Bach&author=E+M%C3%BChlbauer&volume=85&publication_year=2009&pages=526-533&pmid=19695268&.

  68. Ferracioli-Oda E, Qawasmi A, Bloch MH. Meta-analysis: melatonin for the treatment of primary sleep disorders. PloS one. 2013;8(5). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656905/, https://scholar.google.com/scholar_lookup?journal=PLoS+One&title=Meta-Analysis:+melatonin+for+the+treatment+of+primary+sleep+disorders&author=E+Ferracioli-Oda&author=A+Qawasmi&author=MH+Bloch&volume=8&publication_year=2013&pages=e63773&pmid=23691095&doi=10.1371/journal.pone.0063773&.

  69. Hussain SA, Khadim HM, Khalaf BH, Ismail SH, Hussein KI, Sahib AS. Effects of melatonin and zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin. Saudi medical journal. 2006 Oct 1;27(10):1483. https://scholar.google.com/scholar_lookup?journal=Saudi+Med+J&title=Effects+of+melatonin+and+zinc+on+glycemic+control+in+type+2+diabetic+patients+poorly+controlled+with+metformin&author=SA+Hussain&author=HM+Khadim&author=BH+Khalaf&author=SH+Ismail&author=KI+Hussein&volume=27&publication_year=2006&pages=1483-1488&pmid=17013468&.

  70. Thomas AP, Hoang J, Vongbunyong K, Nguyen A, Rakshit K, Matveyenko AV. Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology. 2016 Dec 1;157(12):4720–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133345/, https://scholar.google.com/scholar_lookup?journal=Endocrinology&title=Administration+of+Melatonin+and+Metformin+Prevents+Deleterious+Effects+of+Circadian+Disruption+and+Obesity+in+Male+Rats&author=AP+Thomas&author=J+Hoang&author=K+Vongbunyong&author=A+Nguyen&author=K+Rakshit&volume=157&issue=12&publication_year=2016&pages=4720-4731&pmid=27653034&.

  71. Ha E, Yim SV, Chung JH, Yoon KS, Kang I, Cho YH, Baik HH. Melatonin stimulates glucose transport via insulin receptor substrate-1/phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. Journal of pineal research. 2006 Aug;41(1):67–72. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Melatonin+stimulates+glucose+transport+via+insulin+receptor+substrate-1/phosphatidylinositol+3-kinase+pathway+in+C2C12+murine+skeletal+muscle+cells&author=E+Ha&author=SV+Yim&author=JH+Chung&author=KS+Yoon&author=I+Kang&volume=41&publication_year=2006&pages=67-72&pmid=16842543&.

  72. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy metabolism, and obesity: a review. Journal of pineal research. 2014 May;56(4):371–81. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res.&title=Melatonin,+energy+metabolism,+and+obesity:+a+review&author=B+Prunet-Marcassus&author=M+Desbazeille&author=A+Bros&author=K+Louche&author=P+Delagrange&volume=56&publication_year=2014&pages=371-81&pmid=24654916&doi=10.1111/jpi.12137&.

  73. Cagnacci A, Arangino S, Renzi A, Paoletti AM, Melis GB, Cagnacci P, Volpe A. Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women. Clinical endocrinology. 2001 Mar;54(3):339–46. https://scholar.google.com/scholar_lookup?journal=Clinical+Endocrinology&title=Influence+of+melatonin+administration+on+glucose+tolerance+and+insulin+sensitivity+of+postmenopausal+women&volume=54&publication_year=2001&pages=339-346&pmid=11298086&doi=10.1046/j.1365-2265.2001.01232.x&.

  74. Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, Zhai Y. Melatonin prevents obesity through modulation of gut microbiota in mice. Journal of pineal research. 2017 May;62(4):e12399. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Melatonin+prevents+obesity+through+modulation+of+gut+microbiota+in+mice&author=P+Xu&author=J+Wang&author=F+Hong&author=S+Wang&author=X+Jin&publication_year=2017&pages=62&.

  75. Garfinkel D, Zorin M, Wainstein J, Matas Z, Laudon M, Zisapel N. Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: a randomized, double-blind, crossover study. Diabetes, metabolic syndrome, and obesity: targets and therapy. 2011;4:307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160855/https://scholar.google.com/scholar_lookup?journal=Diabetes+Metab.+Syndr.+Obes.&title=Efficacy+and+safety+of+prolonged-release+melatonin+in+insomnia+patients+with+diabetes:+a+randomized,+double-blind,+crossover+study&author=D.+Garfinkel&author=M.+Zorin&author=J.+Wainstein&author=Z.+Matas&author=M.+Laudon&volume=4&publication_year=2011&pages=307-313&pmid=21887103&.

  76. Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, Ford I. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep medicine reviews. 2005 Feb 1;9(1):41–50. https://scholar.google.com/scholar_lookup?journal=Sleep+Med+Rev&title=Effects+of+exogenous+melatonin+on+sleep:+a+meta-analysis&author=A+Brzezinski&author=MG+Vangel&author=RJ+Wurtman&author=G+Norrie&author=I+Zhdanova&volume=9&publication_year=2005&pages=41-50&pmid=15649737&.

  77. Srinivasan V, Pandi-Perumal SR, Trahkt I, Spence DW, Poeggeler B, Hardeland R, Cardinali DP. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. International Journal of Neuroscience. 2009 Jan 1;119(6):821–46. https://scholar.google.com/scholar_lookup?journal=Int+J+Neurosci&title=Melatonin+and+melatonergic+drugs+on+sleep:+possible+mechanisms+of+action&author=V+Srinivasan&author=SR+Pandi-Perumal&author=I+Trahkt&volume=119&issue=6&publication_year=2009&pages=821-846&pmid=19326288&.

  78. Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database of Systematic Reviews. 2002(2). https://scholar.google.com/scholar_lookup?journal=Cochrane+Database+Syst+Rev&title=Melatonin+for+the+prevention+and+treatment+of+jet+lag&author=A.+Herxheimer&author=K.+Petrie&issue=2&publication_year=2002&pages=CD001520&pmid=12076414&.

  79. Karasek M. Melatonin, human aging, and age-related diseases. Experimental gerontology. 2004 Nov 1;39(11–12):1723–9. https://scholar.google.com/scholar_lookup?journal=Experimental+Gerontology&title=Melatonin,+human+aging,+and+age-related+diseases&author=M.+Karasek&volume=39&publication_year=2004&pages=1723-1729&pmid=15582288&.

  80. Agil A, Rosado I, Ruiz R, Figueroa A, Zen N, Fernández-Vázquez G. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. Journal of pineal research. 2012 Mar;52(2):203–10. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Melatonin+improves+glucose+homeostasis+in+young+zucker+diabetic+fatty+rats&author=A+Agil&author=I+Rosado&author=R+Ruiz&author=A+Figueroa&author=N+Zen&volume=52&publication_year=2012&pages=203-210&pmid=21883445&doi=10.1111/j.1600-079X.2011.00928.x&.

  81. Peschke E, Schucht H, Mühlbauer E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. Journal of pineal research. 2010 Nov;49(4):373–81. https://scholar.google.com/scholar_lookup?journal=J.+Pineal+Res.&title=Long-term+enteral+administration+of+melatonin+reduces+plasma+insulin+and+increases+expression+of+pineal+insulin+receptors+in+both+Wistar+and+type+2-diabetic+Goto-Kakizaki+rats&author=E.+Peschke&author=H.+Schucht&author=E.+M%C3%BChlbauer&volume=49&publication_year=2010&pages=373-381&pmid=20840603&doi=10.1111/j.1600-079X.2010.00804.x&.

  82. Pandi-Perumal SR, Trakht I, Spence DW, Srinivasan V, Dagan Y, Cardinali DP. The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders. Nature clinical practice neurology. 2008 Aug;4(8):436–47. https://scholar.google.com/scholar_lookup?journal=Nat+Clin+Pract+Neurol&title=The+roles+of+melatonin+and+light+in+the+pathophysiology+and+treatment+of+circadian+rhythm+sleep+disorders&author=S.+Pandi-Perumal&author=I.+Trakht&author=D.+Spence&author=V.+Srinivasan&author=Y.+Dagan&volume=4&publication_year=2008&pages=436-447&pmid=18628753&.

  83. Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. British journal of pharmacology. 2009 Mar;156(5):713–27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697759/, https://scholar.google.com/scholar_lookup?journal=British+Journal+of+Pharmacology&title=Role+of+nitrosative+stress+in+the+pathogenesis+of+diabetic+vascular+dysfunction&author=C.+Szabo&volume=156&issue=5&publication_year=2009&pages=713-727&pmid=19210748&doi=10.1111/j.1476-5381.2008.00086.x&.

  84. Korkmaz A, Ma S, Topal T, Rosales-Corral S, Tan DX, Reiter RJ. Glucose: a vital toxin and potential utility of melatonin in protecting against the diabetic state. Molecular and cellular endocrinology. 2012 Feb 26;349(2):128–37. https://scholar.google.com/scholar_lookup?journal=Mol+Cell+Endocrinol&title=Glucose:+A+vital+toxin+and+potential+utility+of+melatonin+in+protecting+against+the+diabetic+state&author=A+Korkmaz&author=S+Ma&author=T+Topal&author=S+Rosales-Corral&author=D+Tan&volume=349&issue=2&publication_year=2012&pages=128-37&pmid=22079284&.

  85. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, Perego C, Muscogiuri G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Current diabetes reviews. 2011 Sep 1;7(5):313–24. https://scholar.google.com/scholar_lookup?journal=Curr.+Diabetes+Rev.&title=The+role+of+oxidative+stress+in+the+pathogenesis+of+type+2+diabetes+mellitus+micro-and+macrovascular+complications:+Avenues+for+a+mechanistic-based+therapeutic+approach&author=F.+Folli&author=D.+Corradi&author=P.+Fanti&author=A.+Davalli&author=A.+Paez&volume=7&publication_year=2011&pages=313-324&pmid=21838680&doi=10.2174/157339911797415585&.

  86. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Reviews in Endocrine and Metabolic Disorders. 2010 Mar 1;11(1):61–74. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882637/, https://scholar.google.com/scholar_lookup?journal=Rev+Endocr+Metab+Disord&title=Endothelial+dysfunction+in+diabetes+mellitus:+molecular+mechanisms+and+clinical+implications&author=CE+Tabit&author=WB+Chung&author=NM+Hamburg&author=JA+Vita&volume=11&issue=1&publication_year=2010&pages=61-74&pmid=20186491&doi=10.1007/s11154-010-9134-4&.

  87. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. Journal of pineal research. 2013 Mar;54(2):127–38. https://scholar.google.com/scholar_lookup?journal=J.+Pineal+Res.&title=Mitochondria+and+chloroplasts+as+the+original+sites+of+melatonin+synthesis:+A+hypothesis+related+to+melatonin%E2%80%99s+primary+function+and+evolution+in+eukaryotes&author=D.+Tan&author=L.+Manchester&author=X.+Liu&author=S.+Rosales-Corral&author=D.+Acuna-Castroviejo&volume=54&publication_year=2013&pages=127-138&pmid=23137057&doi=10.1111/jpi.12026&.

  88. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and applied pharmacology. 2006 Apr 15;212(2):167–78. https://scholar.google.com/scholar_lookup?journal=Toxicology+and+applied+pharmacology&title=Diabetes+and+mitochondrial+function:+role+of+hyperglycemia+and+oxidative+stress&author=AP+Rolo&author=CM+Palmeira&volume=212&issue=2&publication_year=2006&pages=167-78&pmid=16490224&doi=10.1016/j.taap.2006.01.003&.

  89. Kędziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T, Bartosz G, Kędziora J. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. Journal of pineal research. 2009 Apr;46(3):333–7. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res.&title=Melatonin+improves+oxidative+stress+parameters+measured+in+the+blood+of+elderly+type+2+diabetic+patients&author=K+Kedziora-Kornatowska&author=K+Szewczyk-Golec&author=M+Kozakiewicz&author=H+Pawluk&author=J+Czuczejko&volume=46&publication_year=2009&pages=333-7&pmid=19317795&doi=10.1111/j.1600-079X.2009.00666.x&.

  90. Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Molecular medicine. 2009 Jan;15(1):43–50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582546/, https://scholar.google.com/scholar_lookup?journal=Mol.+Med.&title=Melatonin:+An+established+antioxidant+worthy+of+use+in+clinical+trials&author=A.+Korkmaz&author=R.J.+Reiter&author=T.+Topal&author=L.C.+Manchester&author=S.+Oter&volume=15&publication_year=2009&pages=43-50&pmid=19011689&doi=10.2119/molmed.2008.00117&.

  91. Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Neurosignals. 2000;9(3–4):137–59. https://scholar.google.com/scholar_lookup?journal=Biol.+Signals+Recept&title=Significance+of+melatonin+in+antioxidative+defense+system:+Reactions+and+products&author=D.X.+Tan&author=L.C.+Manchester&author=R.J.+Reiter&author=W.B.+Qi&author=M.+Karbownik&volume=9&publication_year=2000&pages=137-159&pmid=10899700&doi=10.1159/000014635&.

  92. Brömme HJ, Mörke W, Peschke E, Ebelt H, Peschke D. Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. Journal of pineal research. 2000 Nov;29(4):201–8. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Scavenging+effect+of+melatonin+on+hydroxyl+radicals+generated+by+alloxan&author=HJ+Br%C3%B6mme&author=W+M%C3%B6rke&author=D+Peschke&author=H+Ebelt&author=D+Peschke&volume=29&publication_year=2000&pages=201-208&pmid=11068942&.

  93. Chuang JI, Pan IL, Hsieh CY, Huang CY, Chen PC, Shin JW. Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. Journal of pineal research. 2016 Sep;61(2):230–40. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Melatonin+prevents+the+dynamin-related+protein+1-dependent+mitochondrial+fission+and+oxidative+insult+in+the+cortical+neurons+after+1-methyl-4-phenylpyridinium+treatment&author=JI+Chuang&author=IL+Pan&author=CY+Hsieh&author=CY+Huang&author=PC+Chen&volume=61&publication_year=2016&pages=230-240&pmid=27159033&.

  94. Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan DX, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: a review. Molecular and cellular endocrinology. 2012 Sep 25;361(1–2):12–23. https://scholar.google.com/scholar_lookup?journal=Mol+Cell+Endocrinol&title=Role+of+melatonin+in+the+regulation+of+autophagy+and+mitophagy:+a+review&author=A+Coto-Montes&author=JA+Boga&author=S+Rosales-Corral&author=L+Fuentes-Broto&author=DX+Tan&volume=361&publication_year=2012&pages=12-23&pmid=22575351&.

  95. Costes S, Boss M, Thomas AP, Matveyenko AV. Activation of melatonin signaling promotes β-cell survival and function. Molecular endocrinology. 2015 May 1;29(5):682–92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415205/ .

  96. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis, and management of diabetic peripheral neuropathy. Diabetes/metabolism research and reviews. 2012 Feb;28:8–14. https://scholar.google.com/scholar_lookup?journal=Diabetes%E2%80%94Metabolism+Research+and+Reviews&title=Advances+in+the+epidemiology,+pathogenesis+and+management+of+diabetic+peripheral+neuropathy&author=S+Tesfaye&author=D+Selvarajah&volume=1&publication_year=2012&pages=8-14&.

  97. Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes. 2003 Jan 1;52(1):165–71. https://scholar.google.com/scholar_lookup?journal=Diabetes&title=Oxidative+injury+and+apoptosis+of+dorsal+root+ganglion+neurons+in+chronic+experimental+diabetic+neuropathy&author=AM+Schmeichel&author=JD+Schmelzer&author=PA+Low&volume=52&publication_year=2003&pages=165-171&pmid=12502508&.

  98. Negi G, Kumar A, Sharma SS. Melatonin modulates earlyammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. Journal of pineal research. 2011 Mar;50(2):124–31. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Melatonin+modulates+neuroinflammation+and+oxidative+stress+in+experimental+diabetic+neuropathy:+effects+on+NF-kappaB+and+Nrf2+cascades&volume=50&issue=2&publication_year=2011&pages=124-131&pmid=21062351&doi=10.1111/j.1600-079X.2010.00821.x&.

  99. Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life sciences. 2018 Jan 15;193:20–33. https://scholar.google.com/scholar_lookup?journal=Life+Sci.&title=Diabetic+retinopathy+pathogenesis+and+the+ameliorating+effects+of+melatonin;+involvement+of+autophagy,+inflammation+and+oxidative+stress&author=E.+Dehdashtian&author=S.+Mehrzadi&author=B.+Yousefi&author=A.+Hosseinzadeh&author=R.+J.+Reiter&volume=193&publication_year=2018&pages=20-33&pmid=29203148&doi=10.1016/j.lfs.2017.12.001&.

  100. Calderon GD, Juarez OH, Hernandez GE, Punzo SM, De la Cruz ZD. Oxidative stress and diabetic retinopathy: development and treatment. Eye. 2017 Aug;31(8):1122–30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558229/https://scholar.google.com/scholar_lookup?journal=Eye+(Lond.)&title=Oxidative+stress+and+diabetic+retinopathy:+development+and+treatment&author=G.+D.+Calderon&author=O.+H.+Juarez&author=G.+E.+Hernandez&author=S.+M.+Punzo&author=Z.+D.+De+la+Cruz&volume=31&issue=8&publication_year=2017&pages=1122-1130&pmid=28452994&doi=10.1038/eye.2017.64&.

  101. Özdemir G, Ergün Y, Bakariş S, Kılınç M, Durdu H, Ganiyusufoğlu E. Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats. Eye. 2014 Aug;28(8):1020–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135253/, https://scholar.google.com/scholar_lookup?journal=Eye&title=Melatonin+prevents+retinal+oxidative+stress+and+vascular+changes+in+diabetic+rats&author=G.+%C3%96zdemir&author=Y.+Erg%C3%BCn&author=S.+Bakari%C5%9F&author=M.+K%C4%B1l%C4%B1n%C3%A7&author=H.+Durdu&volume=28&issue=8&publication_year=2014&pages=1020-1027&pmid=24924441&doi=10.1038/eye.2014.127&.

  102. Djordjevic B, Cvetkovic T, Stoimenov TJ, Despotovic M, Zivanovic S, Basic J, Veljkovic A, Velickov A, Kocic G, Pavlovic D, Sokolovic D. Retinal oxidative stressementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. European journal of pharmacology. 2018 Aug 15;833:290–7. https://scholar.google.com/scholar_lookup?journal=Eur.+J.+Pharmacol.&title=Oral+supplementation+with+melatonin+reduces+oxidative+damage+and+concentrations+of+inducible+nitric+oxide+synthase,+VEGF+and+matrix+metalloproteinase+9+in+the+retina+of+rats+with+streptozotocin/nicotinamide+induced+pre-diabetes&author=B.+Djordjevic&author=T.+Cvetkovic&author=T.+J.+Stoimenov&author=M.+Despotovic&author=S.+Zivanovic&volume=833&publication_year=2018&pages=290-297&pmid=29890158&doi=10.1016/j.ejphar.2018.06.011&.

  103. Kashihara N, Haruna Y, Kondeti KV, Kanwar SY. Oxidative stress in diabetic nephropathy. Current medicinal chemistry. 2010 Dec 1;17(34):4256–69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708695/, https://scholar.google.com/scholar_lookup?journal=Curr+Med+Chem&title=Oxidative+stress+in+diabetic+nephropathy&author=N+Kashihara&author=Y+Haruna&author=VK+Kondeti&author=YS+Kanwar&volume=17&issue=34&publication_year=2010&pages=4256-4269&pmid=20939814&.

  104. Öktem F, Ozguner F, Yilmaz HR, Uz E, Dündar B. Melatonin reduces urinary excretion of N-acetyl-β-d-glucosaminidase, albumin and renal oxidative markers in diabetic rats. Clinical and experimental Pharmacology and Physiology. 2006 Jan;33(1–2):95–101. https://scholar.google.com/scholar_lookup?journal=Clin+Exp+Pharmacol+Physiol&title=Melatonin+reduces+urinary+excretion+of+n-acetyl-b-d-glucosaminidase,+albumin+and+renal+oxidative+markers+in+diabetic+rats&author=F+%C3%96ktem&author=F+Ozguner&author=HR+Yilmaz&author=E+Uz&author=B+D%C3%BCndar&volume=33&issue=1%E2%80%932&publication_year=2006&pages=95-101&pmid=16445706&doi=10.1111/j.1440-1681.2006.04330.x&.

  105. Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015 Jan;34(1):100–13. https://scholar.google.com/scholar_lookup?journal=Hum+Exp+Toxicol&title=Amelioration+of+streptozotocin-induced+diabetic+nephropathy+by+melatonin,+quercetin+and+resveratrol+in+rats&author=H+Elbe&author=N+Vardi&author=M+Esrefoglu&author=B+Ates&author=S+Yologlu&volume=34&publication_year=2015&pages=100-113&pmid=24812155&doi=10.1177/0960327114531995&.

  106. Onk D, Onk OA, Turkmen K, Erol HS, Ayazoglu TA, Keles ON, Halici M, Topal E. Melatonin attenuates quer-induced nephropathy in diabetic rats: the role of interleukin-33 and oxidative stress. Mediators of inflammation. 2016;2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775802/, https://scholar.google.com/scholar_lookup?journal=Mediators+Inflamm.&title=Melatonin+attenuates+contrast-induced+nephropathy+in+diabetic+rats:+the+role+of+interleukin-33+and+oxidative+stress&author=D+Onk&volume=2016&publication_year=2016&pages=9050828&pmid=26989334&doi=10.1155/2016/9050828&

  107. Ji ZZ, Xu YC. Melatonin protects podocytes from angiotensin II-induced injury in an in vitro diabetic nephropathy model. Molecular medicine reports. 2016 Jul 1;14(1):920–6. https://scholar.google.com/scholar_lookup?journal=Mol+Med+Rep&title=Melatonin+protects+podocytes+from+angiotensin+II-induced+injury+in+an+in+vitro+diabetic+nephropathy+model&author=ZZ+Ji&author=YC+Xu&volume=14&publication_year=2016&pages=920-926&pmid=27220903&doi=10.3892/mmr.2016.5313&.

  108. Vanessa Fiorentino T, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current pharmaceutical design. 2013 Oct 1;19(32):5695–703. https://scholar.google.com/scholar_lookup?journal=Curr+Pharm+Des&title=Hyperglycemia-induced+oxidative+stress+and+its+role+in+diabetes+mellitus+related+cardiovascular+diseases&volume=19&issue=32&publication_year=2013&pages=5695-5703&pmid=23448484&doi=10.2174/1381612811319320005&.

  109. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular research. 2008 Jul 15;79(2):341–51. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646899/, https://scholar.google.com/scholar_lookup?journal=Cardiovasc+Res&title=Mitochondrial+fission+mediates+high+glucose%E2%80%90induced+cell+death+through+elevated+production+of+reactive+oxygen+species&volume=79&publication_year=2008&pages=341-351&pmid=18440987&.

  110. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM, Mouton S, Sebti Y, Duez H. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014 Aug 12;130(7):554–64. https://scholar.google.com/scholar_lookup?journal=Circulation&title=Myocardial+contractile+dysfunction+is+associated+with+impaired+mitochondrial+function+and+dynamics+in+type+2+diabetic+but+not+in+obese+patients&volume=130&publication_year=2014&pages=554-564&pmid=24928681&.

  111. Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, Liu Z, Gu X, Wang Y, Fu F, Pei J. Melatonin prevents D rp1-mediated mitochondrial fission in diabetic hearts through SIRT 1-PGC 1α pathway. Journal of pineal research. 2018 Sep;65(2):e12491. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099285/, https://scholar.google.com/scholar_lookup?journal=J.+Pineal+Res.&title=Melatonin+prevents+Drp1-mediated+mitochondrial+fission+in+diabetic+hearts+through+SIRT1-PGC1%CE%B1+pathway.&author=M.+Ding&author=N.+Feng&author=D.+Tang&author=J.+Feng&author=Z.+Li&volume=65&issue=e12491&publication_year=2018&pmid=29575122&doi=10.1111/jpi.12491&.

  112. Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J, Xiao X, Han JS, Liu Y. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018 Feb 1;1864(2):563–78. https://scholar.google.com/scholar_lookup?journal=Biochim+Biophys+Acta+Mol+Basis+Dis&title=Melatonin+protects+diabetic+heart+against+ischemia-reperfusion+injury,+role+of+membrane+receptor-dependent+cGMP-PKG+activation&author=LM+Yu&author=WC+Di&author=X+Dong&author=Z+Li&author=Y+Zhang&volume=1864&publication_year=2018&pages=563-578&pmid=29196237&doi=10.1016/j.bbadis.2017.11.023&.

  113. Yu L, Liang H, Dong X, Zhao G, Jin Z, Zhai M, Yang Y, Chen W, Liu J, Yi W, Yang J. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia–reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. Journal of pineal research. 2015 Oct;59(3):376–90. https://scholar.google.com/scholar_lookup?journal=J+Pineal+Res&title=Reduced+silent+information+regulator+1+signaling+exacerbates+myocardial+ischemia-reperfusion+injury+in+type+2+diabetic+rats+and+the+protective+effect+of+melatonin&author=L.+Yu&volume=59&publication_year=2015&pages=376-390&pmid=26327197&.

  114. Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, Zhang M. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Scientific Reports. 2017 Jan 25;7(1):1–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264601/, https://scholar.google.com/scholar_lookup?journal=Sci.+Rep.&title=Melatonin+ameliorates+myocardial+ischemia/reperfusion+injury+in+type+1+diabetic+rats+by+preserving+mitochondrial+function:+role+of+AMPK-PGC-1%CE%B1-SIRT3+signaling&author=L.+M.+Yu&author=B.+Gong&author=W.+X.+Duan&author=C.+X.+Fan&author=J.+Zhang&volume=7&publication_year=2017&pages=41337&pmid=28120943&doi=10.1038/srep41337&.

  115. Raygan F, Ostadmohammadi V, Bahmani F, Reiter RJ, Asemi Z. Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Clinical Nutrition. 2019 Feb 1;38(1):191–6. https://scholar.google.com/scholar_lookup?journal=Clinical+Nutrition&title=Melatonin+administration+lowers+biomarkers+of+oxidative+stress+and+cardio-metabolic+risk+in+type+2+diabetic+patients+with+coronary+heart+disease:+A+randomized,+double-blind,+placebo-controlled+trial&author=Fariba+Raygan&author=Vahidreza+Ostadmohammadi&author=Fereshteh+Bahmani&author=Russel+J.+Reiter&author=Zatollah+Asemi&volume=38&issue=1&publication_year=2019&pages=191-196&pmid=29275919&doi=10.1016/j.clnu.2017.12.004&.

  116. Lin HW, Lee EJ. Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages. Neuropsychiatric disease and treatment. 2009;5:157. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695239/.

  117. Macleod MR, O'Collins T, Horky LL, Howells DW, Donnan GA. Systematic review and meta-analysis of the efficacy of melatonin in experimental stroke. Journal of pineal research. 2005 Jan;38(1):35–41. [PubMed] [CrossRef] [Google Scholar].

  118. Gilad E, Wong HR, Zingarelli B, Virág L, O'Connor M, Salzman AL, Szabó C. Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFκB activation. The FASEB Journal. 1998 Jun;12(9):685–93. https://scholar.google.com/scholar_lookup?journal=FASEB+J&title=Melatonin+inhibits+expression+of+the+inducible+isoform+of+nitric+oxide+synthase+in+murine+macrophages:+role+of+inhibition+of+NFkappaB+activation&author=E+Gilad&author=HR+Wong&author=B+Zingarelli&volume=12&publication_year=1998&pages=685-693&pmid=9619447&.

  119. E Camacho M, D Carrion M, C Lopez-Cara L, Entrena A, A Gallo M, Espinosa A, Escames G, Acuña-Castroviejo D. Melatonin synthetic analogs as nitric oxide synthase inhibitors. Mini reviews in medicinal chemistry. 2012 Jun 1;12(7):600–17. https://scholar.google.com/scholar_lookup?journal=Mini+Rev+Med+Chem&title=Melatonin+synthetic+analogs+as+nitric+oxide+synthase+inhibitors&volume=12&issue=7&publication_year=2012&pages=600-617&pmid=22512552&.

  120. Mehrzadi S, Motevalian M, Rezaei Kanavi M, Fatemi I, Ghaznavi H, Shahriari M. Protective effect of melatonin in the diabetic rat retina. Fundamental & clinical pharmacology. 2018 Aug;32(4):414–21. https://scholar.google.com/scholar_lookup?journal=Fundamental+&+Clinical+Pharmacology&title=Protective+effect+of+melatonin+in+the+diabetic+rat+retina&author=S.+Mehrzadi&author=M.+Motevalian&author=M.+Rezaei+Kanavi&author=I.+Fatemi&author=H.+Ghaznavi&volume=32&issue=4&publication_year=2018&pages=414-421&pmid=29495082&doi=10.1111/fcp.12361&.

  121. Metwally MM, Ebraheim LL, Galal AA. Potential therapeutic role of melatonin on STZ-induced diabetic central neuropathy: A biochemical, histopathological, immunohistochemical and ultrastructural study. Acta histochemica. 2018 Nov 1;120(8):828–36 https://scholar.google.com/scholar?cluster=4299172077908589070&hl=en&as_sdt=0,5.

  122. Jiang T, Chang Q, Cai J, Fan J, Zhang X, Xu G. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy. Oxidative medicine and cellular longevity. 2016;2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837288/, https://scholar.google.com/scholar_lookup?journal=Oxidative+Medicine+and+Cellular+Longevity&title=Protective+effects+of+melatonin+on+retinal+inflammation+and+oxidative+stress+in+experimental+diabetic+retinopathy&author=T.+Jiang&author=Q.+Chang&author=J.+Cai&author=J.+Fan&author=X.+Zhang&volume=2016&publication_year=2016&pages=13&doi=10.1155/2016/3528274&.

  123. Kahya MC, Naziroğlu M, Çiğ B. Melatonin and selenium reduce plasma cytokine and brain oxidative stress levels in diabetic rats. Brain injury. 2015 Oct 15;29(12):1490–6. https://scholar.google.com/scholar_lookup?journal=Brain+Injury&title=Melatonin+and+selenium+reduce+plasma+cytokine+and+brain+oxidative+stress+levels+in+diabetic+rats&author=M.+C.+Kahya&author=M.+Naziroglu&author=B.+Cig&volume=29&issue=12&publication_year=2015&pages=1490-1496&pmid=26287758&doi=10.3109/02699052.2015.1053526&.

  124. Agil A, Reiter RJ, Jiménez-Aranda A, Ibán-Arias R, Navarro-Alarcón M, Marchal JA, Adem A, Fernández-Vázquez G. Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. Journal of pineal research. 2013 May;54(4):381–8. https://scholar.google.com/scholar_lookup?journal=J.+Pineal+Res.&title=Melatonin+ameliorates+low-grade+inflammation+and+oxidative+stress+in+young+Zucker+diabetic+fatty+rats&author=A.+Agil&author=R.J.+Reiter&author=A.+Jim%C3%A9nez-Aranda&author=R.+Ib%C3%A1n-Arias&author=M.+Navarro-Alarc%C3%B3n&volume=54&publication_year=2013&pages=381-388&pmid=23020082&doi=10.1111/jpi.12012&.

  125. Korkmaz GG, Uzun H, Cakatay U, Aydin S. Melatonin ameliorates oxidative damage in hyperglycemia-induced liver injury. Clinical and Investigative Medicine. 2012 Dec 1:E370–7. https://scholar.google.com/scholar_lookup?journal=Clin+Invest+Med&title=Melatonin+ameliorates+oxidative+damage+in+hyperglycemia-induced+liver+injury&author=GG+Korkmaz&author=H+Uzun&author=U+Cakatay&author=S+Aydin&volume=35&issue=6&publication_year=2012&pages=E370-E377&pmid=23217563&doi=10.25011/cim.v35i6.19209&.

  126. Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, Kubyshin VL, Lapshina EA, Bryszewska M, Reiter RJ, Zavodnik IB. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. European Journal of pharmacology. 2007 Aug 27;569(3):180–7. https://scholar.google.com/scholar_lookup?journal=European+Journal+of+Pharmacology&title=Melatonin+attenuates+metabolic+disorders+due+to+streptozotocin-induced+diabetes+in+rats&author=E.+J.+Sudnikovich&author=Y.+Z.+Maksimchik&author=S.+V.+Zabrodskaya&volume=569&issue=3&publication_year=2007&pages=180-187&pmid=17597602&doi=10.1016/j.ejphar.2007.05.018&.

  127. Klepac N, Rudeš Z, Klepac R. Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomedicine & pharmacotherapy. 2006 Jan 1;60(1):32–5. https://scholar.google.com/scholar_lookup?journal=Biomed.+Pharmacother.&title=Effects+of+melatonin+on+plasma+oxidative+stress+in+rats+with+streptozotocin+induced+diabetes&author=N.+Klepac&author=Z.+Rudes&author=R.+Klepac&volume=60&publication_year=2006&pages=32-35&pmid=16332428&doi=10.1016/j.biopha.2005.08.005&.

Download references

Acknowledgments

The authors would like to thank Dr. Ian H. Rutkofsky for his valuable and constructive suggestions during the process of writing this review article.

Code availability

No computer custom code or mathematical algorithm has been used in this study.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author Fareha Wajid had the idea for the article. The literature search and data analysis were performed by Fareha Wajid, Raju Poolacherla, Fatiha Kabir Mim and Amna Bangash. The work was critically revised by Ian Rutkofsky. All authors contributed to this work with much enthusiasm.

Corresponding author

Correspondence to Fareha Wajid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors, so there was no need for informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajid, F., Poolacherla, R., Mim, F.K. et al. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord 19, 1797–1825 (2020). https://doi.org/10.1007/s40200-020-00585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00585-2

Keywords

Navigation