Skip to main content
Log in

High-dose thiamine supplementation may reduce resting energy expenditure in individuals with hyperglycemia: a randomized, double – blind cross-over trial

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Despite the crucial role of thiamine in glucose and energy metabolism pathways, there has been no published study examining the impact of thiamine on energy metabolism in humans.

Objective

To assess the effects of thiamine supplementation on resting energy expenditure (REE) in individuals with hyperglycemia.

Methods

Twelve hyperglycemic patients completed this double-blind, randomized trial, where all participants received both thiamine (300 mg/day) and matched placebo for 6 weeks in a cross-over manner. REE was assessed by indirect calorimetry. Anthropometric measurements, fasting and 2-h plasma glucose, and glucose-induced thermogenesis were also assessed at the beginning and on the completion of each six-week phase.

Results

Participants consuming thiamine supplements experienced a significant decrease in the REE assessed at week six compared to the baseline [mean (SE): 1478.93 (73.62) vs.1526.40 (73.46) kcal/d, p = 0.02], and the placebo arm (p = 0.002). These results did not change significantly after adjusting for the participants’ body weight and physical activity as potential confounders. Six-week intervention had no significant effect on the participants’ body weight or waist circumference, in either supplement or placebo arms (all p values>0.05). However, correlation analysis highlighted significant positive relationships between the changes in REE, and those in fasting (rs = 0.497, p = 0.019) and 2-h plasma glucose (rs = 0.498, p = 0.018) during the six-week intervention period.

Conclusion

Supplementation with high-dose thiamine may attenuate REE in patients with impaired glucose regulation. Our findings suggest that the impact of thiamine on REE may in part be explained by improved glycemic control.

Trial registration

Australian New Zealand Clinical Trials Registry ACTRN12611000051943. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12611000051943

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.

    Article  PubMed  Google Scholar 

  2. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20. https://doi.org/10.1038/414813a 414813a [pii].

    Article  CAS  PubMed  Google Scholar 

  3. Alaei-Shahmiri F, Zhao Y, Sherriff J. Assessment of vascular function in individuals with hyperglycemia: a cross-sectional study of glucose - induced changes in digital volume pulse. J Diabetes Metab Disord. 2015;14:23. https://doi.org/10.1186/s40200-015-0153-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nair KS, Webster J, Garrow JS. Effect of impaired glucose tolerance and type II diabetes on resting metabolic rate and thermic response to a glucose meal in obese women. Metabolism. 1986;35(7):640–4.

    Article  CAS  PubMed  Google Scholar 

  5. Basu R, Barosa C, Jones J, Dube S, Carter R, Basu A, et al. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab. 2013;98(3):E409–17. https://doi.org/10.1210/jc.2012-3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 1999;48(11):2197–203.

    Article  CAS  PubMed  Google Scholar 

  7. Franssila-Kallunki A, Groop L. Factors associated with basal metabolic rate in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(10):962–6.

    Article  CAS  PubMed  Google Scholar 

  8. Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53(5):821–35. https://doi.org/10.1021/bi401618y.

    Article  CAS  PubMed  Google Scholar 

  9. Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact. 2006;163(1–2):94–112. https://doi.org/10.1016/j.cbi.2006.04.014.

    Article  CAS  PubMed  Google Scholar 

  10. Berrone E, Beltramo E, Solimine C, Ape AU, Porta M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem. 2006;281(14):9307–13. https://doi.org/10.1074/jbc.M600418200.

    Article  CAS  PubMed  Google Scholar 

  11. La Selva M, Beltramo E, Pagnozzi F, Bena E, Molinatti PA, Molinatti GM, et al. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia. 1996;39(11):1263–8.

    Article  PubMed  Google Scholar 

  12. Thornalley PJ, Jahan I, Ng R. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J Biochem. 2001;129(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Ortiz M, Martinez-Abundis E, Robles-Cervantes JA, Ramirez-Ramirez V, Ramos-Zavala MG. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naive patients with type 2 diabetes. Eur J Nutr. 2011;50(2):145–9. https://doi.org/10.1007/s00394-010-0123-x.

    Article  CAS  PubMed  Google Scholar 

  14. Alaei-Shahmiri F, Soares MJ, Zhao Y, Sherriff J. The impact of thiamine supplementation on blood pressure, serum lipids and C-reactive protein in individuals with hyperglycemia: a randomised, double-blind cross-over trial. Diabetes Metab Syndr. 2015. https://doi.org/10.1016/j.dsx.2015.04.014.

  15. Rabbani N, Alam SS, Riaz S, Larkin JR, Akhtar MW, Shafi T, et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia. 2009;52(2):208–12. https://doi.org/10.1007/s00125-008-1224-4.

    Article  CAS  PubMed  Google Scholar 

  16. Alaei Shahmiri F, Soares MJ, Zhao Y, Sherriff J. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: a randomized, double-blind cross-over trial. Eur J Nutr. 2013;52(7):1821–4. https://doi.org/10.1007/s00394-013-0534-6.

    Article  CAS  PubMed  Google Scholar 

  17. Liu M, Alimov AP, Wang H, Frank JA, Katz W, Xu M, et al. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience. 2014;267:102–13. https://doi.org/10.1016/j.neuroscience.2014.02.033.

    Article  CAS  PubMed  Google Scholar 

  18. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva. 2006. www.who.int/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf. Accessed 11 Jun 2008.

  19. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1–9. https://doi.org/10.1113/jphysiol.1949.sp004363.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weyer C, Bogardus C, Pratley RE. Metabolic factors contributing to increased resting metabolic rate and decreased insulin-induced thermogenesis during the development of type 2 diabetes. Diabetes. 1999;48(8):1607–14. https://doi.org/10.2337/diabetes.48.8.1607.

    Article  CAS  PubMed  Google Scholar 

  21. Chow S-C, Shao J, Wang H. Sample size calculations in clinical research. Biostatistics series: Chapman and Hall/CRC; 2008.

  22. Caron N, Peyrot N, Caderby T, Verkindt C, Dalleau G. Energy expenditure in people with diabetes mellitus: a review. Front Nutr. 2016;3:56.

    Article  PubMed  PubMed Central  Google Scholar 

  23. M-x S, Zhao S, Mao H, Wang Z-j, Zhang X-y, Yi L. Increased BMR in overweight and obese patients with type 2 diabetes may result from an increased fat-free mass. Journal of Huazhong University of Science and Technology [Medical Sciences]. 2016;36(1):59–63.

    Article  Google Scholar 

  24. Nawata K, Sohmiya M, Kawaguchi M, Nishiki M, Kato Y. Increased resting metabolic rate in patients with type 2 diabetes mellitus accompanied by advanced diabetic nephropathy. Metabolism. 2004;53(11):1395–8.

    Article  CAS  PubMed  Google Scholar 

  25. Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes. 1989;38(5):550–7.

    Article  CAS  PubMed  Google Scholar 

  26. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes Targets Ther. 2014;7:241.

    Google Scholar 

  27. Huynh MKQ, Kinyua AW, Yang DJ, Kim KW. Hypothalamic AMPK as a regulator of energy homeostasis. Neural Plast. 2016;2016.

  28. Hardie DG, Ashford ML. AMPK: regulating energy balance at the cellular and whole body levels. Physiology. 2014;29(2):99–107. https://doi.org/10.1152/physiol.00050.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itani SI, Saha AK, Kurowski TG, Coffin HR, Tornheim K, Ruderman NB. Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes. 2003;52(7):1635–40. https://doi.org/10.2337/diabetes.52.7.1635.

    Article  CAS  PubMed  Google Scholar 

  30. McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9(1):23–34. https://doi.org/10.1016/j.cmet.2008.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tabidi I, Saggerson D. Inactivation of the AMP-activated protein kinase by glucose in cardiac myocytes: a role for the pentose phosphate pathway. Biosci Rep. 2012;32(3):229–39.

    Article  CAS  PubMed  Google Scholar 

  32. Karkabounas S, Papadopoulos N, Anastasiadou C, Gubili C, Peschos D, Daskalou T, et al. Effects of alpha-lipoic acid, carnosine, and thiamine supplementation in obese patients with type 2 diabetes mellitus: a randomized, double-blind study. J Med Food. 2018;21(12):1197–203. https://doi.org/10.1089/jmf.2018.0007.

    Article  CAS  PubMed  Google Scholar 

  33. Wilkinson TJ, Hanger HC, Elmslie J, George PM, Sainsbury R. The response to treatment of subclinical thiamine deficiency in the elderly. Am J Clin Nutr. 1997;66(4):925–8. https://doi.org/10.1093/ajcn/66.4.925.

    Article  CAS  PubMed  Google Scholar 

  34. Smidt LJ, Cremin FM, Grivetti LE, Clifford AJ. Influence of thiamin supplementation on the health and general well-being of an elderly Irish population with marginal thiamin deficiency. J Gerontol. 1991;46(1):M16–22.

    Article  CAS  PubMed  Google Scholar 

  35. Chen S, Vieira A. Body mass index and dietary intake of thiamin: evidence for a sexually dimorphic relation. J Hum Ecol. 2007;15:17–22.

    Google Scholar 

Download references

Acknowledgments

This study was funded by an intramural grant from Curtin University.

Author information

Authors and Affiliations

Authors

Contributions

FAS, JS and MJS were involved in the conception and design of the study, and contributed to the final version of the manuscript. Data were collected, analyzed and interpreted by FAS. ML was involved in drafting the manuscript. YZ provided the support with statistical analysis. All authors read and approved the final manuscript

Corresponding author

Correspondence to Fariba Alaei-Shahmiri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaei-Shahmiri, F., Soares, M.J., Lahouti, M. et al. High-dose thiamine supplementation may reduce resting energy expenditure in individuals with hyperglycemia: a randomized, double – blind cross-over trial. J Diabetes Metab Disord 19, 297–304 (2020). https://doi.org/10.1007/s40200-020-00508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00508-1

Keywords

Navigation