Skip to main content

Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; a randomized, double-blind, placebo-controlled study

Abstract

Purpose

The aim of this study was to investigate the effect of probiotic bacteria of Lactobacillus acidophilus, cinnamon powder and their combinations on the glycemic and antioxidant indices in patients with type 2 diabetes.

Methods

A total of 136 patients randomized with type 2 diabetes entered the study and were randomly divided into four groups who were matched for age and gender. Thereafter, alongside their routine pharmacotherapy, each group followed one of the following diets: Group A: Lactobacillus acidophilus 108 cfu and 0.5 g of powdered cinnamon (synbiotic). Group B: Lactobacillus acidophilus (probiotic), Group C: powdered cinnamon. Group D: rice flour powder as placebo. At the beginning and end of the intervention, fasting blood sugar (FBS), HbA1c, advance glycation end products (AGE), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and antioxidant enzymes of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were measured.

Results

Following 3 months of treatment, the mean FBS level was decreased significantly in probiotic, cinnamon, and synbiotic supplementation groups compared with control (P < 0.01). FBS levels in probiotic, cinnamon, and synbiotic groups were significantly decreased compared with the control group (P = 0.001, P = 0.063 and P = 0.001, respectively). The mean HbA1C in probiotic, cinnamon, and synbiotic groups were also decreased (P = 0.001, P = 0.001 and P = 0.04, respectively). The mean AGE in synbiotic group was significantly decreased (P = 0.037). Probiotic, cinnamon and synbiotic all could improve antioxidant enzyme activity modestly. However, the most significant effect was seen in probiotic group.

Conclusions

According to the current results, the use of probiotic supplements (individually or in combination with cinnamon) leads to a reduction in blood glucose and an increase in antioxidant enzymes in people with type 2 diabetes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Cho N, Shaw J, Karuranga S, Huang Y, da Rocha FJ, Ohlrogge A, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

  2. 2.

    Ramezankhani A, Harati H, Bozorgmanesh M, Tohidi M, Khalili D, Azizi F, et al. Diabetes mellitus: findings from 20 years of the Tehran lipid and glucose study. Int J Endocrinol Metab. 16(4 Suppl):e84784.

  3. 3.

    Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Bärnighausen T, et al. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabete Endocrinol. 2017;5(6):423–30.

    Google Scholar 

  4. 4.

    Grams J, Garvey WT. Weight loss and the prevention and treatment of type 2 diabetes using lifestyle therapy, pharmacotherapy, and bariatric surgery: mechanisms of action. Curr Obes Rep. 2015;4(2):287–302.

    CAS  PubMed  Google Scholar 

  5. 5.

    Mirmiran P, Bahadoran Z, Azizi F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes. 2014;5(3):267.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gomes AC, Bueno AA, de Souza RGM, Mota JF. Gut microbiota, probiotics and diabetes. Nutr J. 2014;13(1):60.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr Clin Res Rev. 2018;12(5):617–24.

    Google Scholar 

  8. 8.

    Motevaseli E, Khorramizadeh MR, Hadjati J, Bonab SF, Eslami S, Ghafouri-Fard S. Investigation of antitumor effects of Lactobacillus crispatus in experimental model of breast cancer in BALB/c mice. Immunotherapy. 2018;10(2):119–29.

    CAS  PubMed  Google Scholar 

  9. 9.

    Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrient. 2013;5(4):1417–35.

    CAS  Google Scholar 

  10. 10.

    Maierean SM, Serban M-C, Sahebkar A, Ursoniu S, Serban A, Penson P, et al. The effects of cinnamon supplementation on blood lipid concentrations: a systematic review and meta-analysis. J Clin Lipidol. 2017;11(6):1393–406.

    PubMed  Google Scholar 

  11. 11.

    Costello RB, Dwyer JT, Saldanha L, Bailey RL, Merkel J, Wambogo E. Do cinnamon supplements have a role in glycemic control in type 2 diabetes? A narrative review. J Acad Nutr Diet. 2016;116(11):1794–802.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yao K, Zeng L, He Q, Wang W, Lei J, Zou X. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. Med Sci Monit. 2017;23:3044–53.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Yadav H, Jain S, Sinha P. Effect of Dahi containing Lactococcus lactis on the progression of diabetes induced by a high-fructose diet in rats. Biosci Biotechnol Biochem. 2006;70(5):1255–8.

    CAS  PubMed  Google Scholar 

  14. 14.

    Al-Salami H, Butt G, Fawcett JP, Tucker IG, Golocorbin-Kon S, Mikov M. Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metabol Pharmacokinet. 2008;33(2):101–6.

    CAS  Google Scholar 

  15. 15.

    Ejtahed HS, Mohtadi Nia J, Homayouni Rad A, Niafar M, Asghari Jafarabadi M, Mofid V. The effects of probiotic and conventional yoghurt on diabetes markers and insulin resistance in type 2 diabetic patients: a randomized controlled clinical trial. Iranian J Endo Metabol. 2011;13(1):112.

    Google Scholar 

  16. 16.

    Lee E, Jung SR, Lee SY, Lee NK, Paik HD, Lim SI. Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism. Nutrients. 2018;10(5):E643.

    PubMed  Google Scholar 

  17. 17.

    Javanmard A, Ashtari S, Sabet B, Davoodi SH, Rostami-Nejad M, Esmaeil Akbari M, et al. Probiotics and their role in gastrointestinal cancers prevention and treatment; an overview. Gastroenterol Hepatol Bed Bench. 2018;11(4):284–95.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Singhal B, Mukherjee A, Srivastav S. Role of probiotics in pancreatic cancer prevention: the prospects and challenges. Adv Biosci Biotechnol. 2016;7:468–500.

    CAS  Google Scholar 

  19. 19.

    Liang Y, Li Y, Sun A, Liu X. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci Nutr. 2019;7(6):2186–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Muhammad JS, Zaidi SF, Shaharyar S, Refaat A, Usmanghani K, Saiki I, et al. Antiinflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol Pharm Bull. 2015;38:109–15.

    CAS  PubMed  Google Scholar 

  21. 21.

    Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li HB. Antibacterial and antifungal activities of spices. Int J Mol Sci. 2017;18(6):E1283.

    PubMed  Google Scholar 

  22. 22.

    Liao JC, Deng JS, Chiu CS, Hou WC, Huang SS, Shie PH, et al. Anti-inflammatory activities of Cinnamomum cassia constituents in vitro and in vivo. Evid Based Complement Alternat Med. 2012;2012:429320.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Starowicz M, Zieliński H. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants (Basel). 2019;8(4):E100.

    Google Scholar 

  24. 24.

    Medagama AB. The glycaemic outcomes of cinnamon, a review of the experimental evidence and clinical trials. Nutr J. 2015;14:108.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Anderson RA, Zhan Z, Luo R, Guo X, Guo Q, Zhou J, et al. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med. 2015;6(4):332–6.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lee DK, Jang S, Baek EH, Kim MJ, Lee KS, Shin HS, et al. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis. 2009;8(1):21.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth D, et al. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest. 2006;36(5):340–4.

    CAS  PubMed  Google Scholar 

  28. 28.

    Zahmatkesh M, Fallah Huseini H, Hajiaghaee R, Heidari M, Mehrafarin A, Tavakoli-far B. The effects of Cinnamomum zeylanicum J. Presl on blood glucose level in patients with type 2 diabetes, a double-blind clinical trial. J Med Plants. 2012;1(41):258–63.

    Google Scholar 

  29. 29.

    Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, et al. Antioxidant properties of probiotic bacteria. Nutrients. 2017;9(5):E521.

    PubMed  Google Scholar 

  30. 30.

    Khalili L, Alipour B, Asghari Jafar-Abadi M, Faraji I, Hassanalilou T, Mesgari Abbasi M, et al. The effects of Lactobacillus casei on glycemic response, serum Sirtuin1 and Fetuin-a levels in patients with type 2 diabetes mellitus: a randomized controlled trial. Iran Biomed J. 2019;23(1):68–77.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Raygan F, Rezavandi Z, Bahmani F, Ostadmohammadi V, Mansournia MA, Tajabadi-Ebrahimi M, et al. The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease. Diabetol Metab Syndr. 2018;10:51.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Barengolts E, Smith ED, Reutrakul S, Tonucci L, Anothaisintawee T. The effect of probiotic yogurt on glycemic control in type 2 diabetes or obesity: a meta-analysis of nine randomized controlled trials. Nutrients. 2019;11(3):E671.

    PubMed  Google Scholar 

  33. 33.

    Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and Synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: a meta-analysis of randomized controlled trials. Adv Pharm Bull. 2018;8(4):565–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cerdó T, García-Santos JA, Bermúdez MG, Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients. 2019;11(3):E635.

    PubMed  Google Scholar 

  35. 35.

    Nasri K, Jamilian M, Rahmani E, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z. The effects of synbiotic supplementation on hormonal status, biomarkers of inflammation and oxidative stress in subjects with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. BMC Endocr Disord. 2018;18(1):21.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ranjbar R, Yadollahi Farsani F, Safarpoor DF. Phenotypic analysis of antibiotic resistance and genotypic study of the vacA, cagA, iceA, oipA and babA genotypes of the Helicobacter pylori strains isolated from raw milk. Antimicrob Res Infect Control. 2018;7:115.

    Google Scholar 

  37. 37.

    Ranjbar R, Safarpoor Dehkordi F, Sakhaei Shahreza MH, Rahimi E. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob Res Infect Control. 2018;7:53.

    Google Scholar 

  38. 38.

    Safarpoor FD, Gandomi H, Basti AA, Misaghi A, Rahimi E. Phenotypic and genotypic characterization of antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from hospital food. Antimicrob Res Infect Control. 2017;6:104–4.

  39. 39.

    Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods; virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob Res Infect Control. 2017;6:4.

    Google Scholar 

  40. 40.

    Ranjbar R, Seif A, Safarpoor DF. Prevalence of antibiotic resistance and distribution of virulence factors in the shiga toxigenic Escherichia coli recovered from hospital food. Jundishapur J Microbiol. 2019;12(5):e82659.

    CAS  Google Scholar 

  41. 41.

    Hemmatinezhad B, Khamesipour F, Mohammadi M, Safarpoor Dehkordi F, Mashak Z. Microbiological investigation of O-serogroups, virulence factors and antimicrobial resistance properties of shiga toxin-producing Escherichia coli isolated from ostrich, turkey and quail meats. J Food Safety. 2015;35(4):491–500.

    CAS  Google Scholar 

  42. 42.

    Safarpoor Dehkordi F, Barati S, Momtaz H, Hosseini Ahari SN, Nejat DS. Comparison of shedding, and antibiotic resistance properties of Listeria monocytogenes isolated from milk, feces, urine, and vaginal secretion of bovine, ovine, caprine, buffalo, and camel species in Iran. Jundishapur J Microbiol. 2013;6(3):284–94.

    Google Scholar 

  43. 43.

    Ghorbani F, Gheisari E, Dehkordi FS. Genotyping of vacA alleles of Helicobacter pylori strains recovered from some Iranian food items. Trop J Pharm Res. 2016;15(8):1631–6.

    CAS  Google Scholar 

  44. 44.

    Dehkordi FS, Khamesipour F, Momeni M. Brucella abortus and Brucella melitensis in Iranian bovine and buffalo semen samples: the first clinical trial on seasonal, senile and geographical distribution using culture, conventional and real-time polymerase chain reaction assays. Kafkas Univ Vet Fak Derg. 2014;20(6):821–8.

    Google Scholar 

  45. 45.

    Dehkordi FS, Haghighi N, Momtaz H, Rafsanjani MS, Momeni M. Conventional vs real-time PCR for detection of bovine herpes virus type 1 in aborted bovine, buffalo and camel foetuses. Bulgar J Vet Med. 2013;16(2):102–11.

    Google Scholar 

  46. 46.

    Nejat S, Momtaz H, Yadegari M, Nejat S, Safarpour Dehkordi F, Khamesipour F. Seasonal, geographical, age and breed distributions of equine viral arteritis in Iran. Kafkas Univ Vet Fak Derg. 2015;21(1):111–6.

    Google Scholar 

  47. 47.

    Dehkordi FS, Valizadeh Y, Birgani TA, Dehkordi KG. Prevalence study of Brucella melitensis and Brucella abortus in cow's milk using dot enzyme linked immuno sorbent assay and duplex polymerase chain reaction. J Pure Appl Microbiol. 2014;8(2):1065–9.

    CAS  Google Scholar 

  48. 48.

    Rahimi E, Yazdanpour S, Dehkordi FS. Detection of Toxoplasma gondii antibodies in various poultry meat samples using enzyme linked immuno sorbent assay and its confirmation by polymerase chain reaction. J Pure Appl Microbiol. 2014;8(1):421–7.

    Google Scholar 

  49. 49.

    Dehkordi AH, Khaji L, Shahreza MS, Mashak Z, Safarpoor Dehkordi F, Safaee Y, et al. One-year prevalence of antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus recovered from raw meat. Trop Biomed. 2017;34(2):396–404.

    Google Scholar 

  50. 50.

    Madah H, Rostami F, Rahimi E, Dehkord FS. Prevalence of enterotoxigenic Staphylococcus aureus isolated from chicken nugget in Iran. Jundishapur J Microbiol. 2014;7(8):e10237.

    Google Scholar 

  51. 51.

    Momtaz H, Dehkordi FS, Rahimi E, Asgarifar A, Momeni M. Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province. Iran. J Appl Poult Res. 2013;22(4):913–21.

    CAS  Google Scholar 

  52. 52.

    Momtaz H, Safarpoor Dehkordi F, Taktaz T, Rezvani A, Yarali S. Shiga toxin-producing Escherichia coli isolated from bovine mastitic milk: serogroups, virulence factors, and antibiotic resistance properties. Sci World J. 2012;2012:618709.

    Google Scholar 

  53. 53.

    Momtaz H, Rahimian MD, Safarpoor DF. Identification and characterization of Yersinia enterocolitica isolated from raw chicken meat based on molecular and biological techniques. J Appl Poult Res. 2013;22(1):137–45.

Download references

Acknowledgements

The authors would like to thank the vice-chancellor for research of Alborz University of Medical Sciences for financial support of the project. We also thank to Medicinal Plants Research Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahareh Tavakoli-Far.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirmiranpour, H., Huseini, H.F., Derakhshanian, H. et al. Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; a randomized, double-blind, placebo-controlled study. J Diabetes Metab Disord 19, 53–60 (2020). https://doi.org/10.1007/s40200-019-00474-3

Download citation

Keywords

  • Diabetes mellitus
  • Probiotic
  • Cinnamon
  • Synbiotic
  • Antioxidant enzymes