Skip to main content

Advertisement

Log in

Anti-hyperglycemic and ameliorative effect of concentrated hot water-infusion of Phragmanthera incana leaves on type 2 diabetes and indices of complications in diabetic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objectives

This study investigated the anti-hyperglycemic effects of concentrated hot water infusion of Phragmanthra incana leaves as well as its ameliorative effect on indices related to diabetic complications in a type 2 diabetes model of rats.

Methods

Type 2 diabetes was induced by feeding 10% fructose solution ad libitum for two weeks followed by an intraperitoneal injection of streptozotocin (40 mg/kg body weight (b.w.)). Concentrated plant infusion was administered orally at a dose of 150 and 300 mg/kg b.w. to two type 2 diabetes rat groups. Diabetic rats without treatment served as a negative control while the group administered with metformin was served as a positive control. The intervention lasted for 4 weeks when a single oral dose was given daily for 5 days a week. Body weight and blood glucose were determined every week. An oral glucose tolerance test was performed in the last week of treatment. The rats were sacrificed after 4 weeks of intervention, and the blood and organs were harvested for further analysis.

Results

Both dosages of the plant infusion significantly improved body weight, pancreatic β-cell function (HOMA-β), insulin secretion and reduced blood glucose, insulin resistance (HOMA-IR) with concomitant reduction in the elevated level of serum α-amylase activity, fructosamine, uric acid, urea, and liver function enzymes. The liver glycogen content was significantly improved while the activity of liver glucose-6-phosphatase was significantly reduced.

Conclusion

The results demonstrate the anti-hyperglycemic ability of P. incana and its ability to delay the onset of diabetic complications which can be exploited for the anti-diabetic drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.D.F. IDF diabetes atlas. Brussels: International Diabetes Federation. 2017; 8th edition Online: www.diabetesatlas.org.

  2. Roglic G. WHO global report on diabetes: a summary. Int J Noncomun Dis. 2016;1(1):3.

    Google Scholar 

  3. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953–66.

    CAS  PubMed  Google Scholar 

  4. Renström E, Barg S, Thévenod F, Rorsman P. Sulfonylurea-mediated stimulatio expert Opin Pharmacother. Of insulin exocytosis via an ATP-sensitive K+ channel–independent action. Diabetes. 2002;51(suppl 1):S33–S6.

    PubMed  Google Scholar 

  5. Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opin Pharmacother. 2015;16(13):1959–81.

    PubMed  Google Scholar 

  6. Eid HM, Martineau LC, Saleem A, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, et al. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol Nutr Food Res. 2010;54(7):991–1003.

    CAS  PubMed  Google Scholar 

  7. Abd El Latif A, El Bialy BES, Mahboub HD, Abd Eldaim MA. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression. Biochem Cell Biol. 2014;92(5):413–9.

    CAS  PubMed  Google Scholar 

  8. Patel D, Prasad S, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2012;2(4):320–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Oyebode OA, Erukainure OL, Chukwuma CI, Ibeji CU, Koorbanally NA, Islam S. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Biomed Pharmacother. 2018;106:1116–25.

    CAS  PubMed  Google Scholar 

  10. Oyebode OA, Erukainure OL, Koorbanally NA, ISLAM S. Acalypha wilkesiana ‘Java white’: identification of some bioactive compounds by GC-MS and their effects on key enzymes linked to type 2 diabetes. Acta Pharma. 2018;68(4):425–39.

    CAS  Google Scholar 

  11. Sanni O, Erukainure OL, Chukwuma CI, Koorbanally NA, Ibeji CU, Islam MS. Azadirachta indica inhibits key enzyme linked to type 2 diabetes in vitro, abates oxidative hepatic injury and enhances muscle glucose uptake ex vivo. Biomed Pharmacother. 2019;109:734–43.

    CAS  PubMed  Google Scholar 

  12. Ogunmefun O, Fasola T, Saba A, Akinyemi A. Inhibitory effect of Phragmanthera incana (Schum.) harvested from Cocoa (Theobroma cacao) and Kolanut (Cola nitida) trees on Fe2+ induced lipid oxidative stress in some rat tissues-in vitro. Int J Biomed Sci. 2015;11(1):16.

    PubMed Central  Google Scholar 

  13. Ogunmefun O, Saba A, Fasola T, Akharaiyi F, Oridupa O. Phytochemistry and in-vitro Antimicrobial Evaluation of Phragmanthera incana (Schum.) Balle Extracts on Selected Clinical Microorganisms. 2016.

    Google Scholar 

  14. Ogunmefun O, Fasola T, Saba A, Oridupa O, Adarabioyo M. Haematology and serum biochemistry of alloxan-induced diabetic rats administered with extracts of Phragmanthera incana (Schum.) Balle. Afr J Pharm Pharmacol. 2017;11(43):545–53.

    CAS  Google Scholar 

  15. Sanni O, Erukainure OL, Oyebode OA, Koorbanally NA, Islam MS. Concentrated hot water-infusion of phragmanthera incana improves muscle glucose uptake, inhibits carbohydrate digesting enzymes and abates Fe2+−induced oxidative stress in hepatic tissues. Biomed Pharmacother. 2018;108:417–23.

    CAS  PubMed  Google Scholar 

  16. Wilson RD, Islam MS. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep. 2012;64(1):129–39.

    CAS  PubMed  Google Scholar 

  17. Shai LJ, Masoko P, Mokgotho MP, Magano SR, Mogale AM, Boaduo N, et al. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. S Afr J Bot. 2010;76(3):465–70.

    Google Scholar 

  18. Lo S, Russell JC, Taylor A. Determination of glycogen in small tissue samples. J Appl Physiol. 1970;28(2):234–6.

    CAS  PubMed  Google Scholar 

  19. Koide H. Pathological occurrence of glucose-6-phosphatase in serum in liver disease. Clin Chim Acta. 1959;4:554–61.

    CAS  PubMed  Google Scholar 

  20. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11):741–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomlinson TR, Akerele O. Medicinal plants: their role in health and biodiversity: University of Pennsylvania press; 2015.

    Google Scholar 

  22. Mahady GB. Global harmonization of herbal health claims. J Nutr. 2001;131(3):1120S–3S.

    CAS  PubMed  Google Scholar 

  23. ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):S81–90.

    Google Scholar 

  24. Islam MS. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine. 2011;19(1):25–31.

    PubMed  Google Scholar 

  25. Ibrahim MA, Islam MS. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm Biol. 2017;55(1):416–22.

    PubMed  Google Scholar 

  26. Rubin RR, Peyrot M. Psychological issues and treatments for people with diabetes. J Clin Psychol. 2001;57(4):457–78.

    CAS  PubMed  Google Scholar 

  27. Grams J, Garvey WT. Weight loss and the prevention and treatment of type 2 diabetes using lifestyle therapy, pharmacotherapy, and bariatric surgery: mechanisms of action. Curr Obes Rep. 2015;4(2):287–302.

    CAS  PubMed  Google Scholar 

  28. S-i G, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, et al. Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2002;57(1):1–10.

    Google Scholar 

  29. Kjems LL, Kirby BM, Welsh EM, Veldhuis JD, Straume M, McIntyre SS, et al. Decrease in β-cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes. 2001;50(9):2001–2012.

    CAS  PubMed  Google Scholar 

  30. Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23(3):295–301.

    CAS  PubMed  Google Scholar 

  31. Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295(6):E1323–32.

    CAS  PubMed  Google Scholar 

  32. Samuel VT, Liu Z-X, Qu X, Elder BD, Bilz S, Befroy D. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53.

    CAS  PubMed  Google Scholar 

  33. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci. 2007;104(31):12587–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One. 2011;6(2):e16556.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol. 2010;205(1):97.

    CAS  PubMed  Google Scholar 

  36. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.

    CAS  PubMed  Google Scholar 

  37. Liu Z, Barrett EJ, Dalkin AC, Zwart AD, Chou JY. Effect of acute diabetes on rat hepatic glucose-6-phosphatase activity and its messenger RNA level. Biochem Biophys Res Commun. 1994;205(1):680–6.

    CAS  PubMed  Google Scholar 

  38. Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods Hum Nutr. 2011;66(2):143–8.

    CAS  PubMed  Google Scholar 

  39. Krane EJ. Diabetic ketoacidosis: biochemistry, physiology, treatment, and prevention. Pediatr Clin N Am. 1987;34(4):935–60.

    CAS  Google Scholar 

  40. King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004;122(4):333–8.

    CAS  PubMed  Google Scholar 

  41. Malmström H, Walldius G, Grill V, Jungner I, Gudbjörnsdottir S, Hammar N. Fructosamine is a useful indicator of hyperglycaemia and glucose control in clinical and epidemiological studies–cross-sectional and longitudinal experience from the AMORIS cohort. PLoS One. 2014;9(10):e111463.

    PubMed  PubMed Central  Google Scholar 

  42. Hovind P, Rossing P, Johnson RJ, Parving H-H. Serum uric acid as a new player in the development of diabetic nephropathy. J Ren Nutr. 2011;21(1):124–7.

    CAS  PubMed  Google Scholar 

  43. Harris EH. Elevated liver function tests in type 2 diabetes. Clin Diabetes. 2005;23(3):115–9.

    Google Scholar 

Download references

Acknowledgements

This study was supported by a Competitive Research Grant from the Research Office of the University of KwaZulu-Nata, Durban; and Grant Support for Women and Young Researchers from the National Research Foundation (NRF), Pretoria, South Africa. First author received a Doctoral study scholarship from NRF as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahidul Islam.

Ethics declarations

Compliance with ethical standards

This study was conducted according to the rules and regulations of the Animal Research Ethics Committee of the University of KwaZulu-Natal, Durban, South Africa.

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanni, O., Erukainure, O.L., Oyebode, O. et al. Anti-hyperglycemic and ameliorative effect of concentrated hot water-infusion of Phragmanthera incana leaves on type 2 diabetes and indices of complications in diabetic rats. J Diabetes Metab Disord 18, 495–503 (2019). https://doi.org/10.1007/s40200-019-00456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-019-00456-5

Keywords

Navigation