Advertisement

Journal of Diabetes & Metabolic Disorders

, Volume 18, Issue 1, pp 263–265 | Cite as

Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs

  • Hanieh-Sadat Ejtahed
  • Shirin Hasani-RanjbarEmail author
Commentary

Abstract

Considering the increasing prevalence of obesity worldwide, new approaches for its control have been investigated. Recent evidences highlighted the role of the gut microbiome in weight management. Obesity-associated gut microbiota alters host energy uptake, insulin sensitivity, inflammation, and fat storage. Moreover, the gut microbiota-derived metabolites could control appetite directly by affecting the central nervous system or indirectly through modifying the gut hormones secretion. Metabolites of the gut microbiome-brain axis could be novel targets for designing drugs in obesity. They can be prescribed directly like butyrate or can be modulated by manipulating the gut microbiota through probiotics, prebiotics and other dietary components such as polyphenols. Microbiome studies are trying to identify novel microbial species as next-generation probiotics to restore healthy gut microbiota composition and combat obesity and its related complications. According to the relationships between the gut microbiota and microbial composition of other parts of the body, the mechanisms linking the gut-brain axis and the whole human microbiota should be elucidated to provide novel anti-obesity strategies.

Keywords

Obesity Human microbiota Gut-brain axis Metabolites 

Notes

Authors’ contributions

HE drafted the manuscript. SH designed the study and helped to draft the manuscript. Both authors read and approved the final manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

References

  1. 1.
    Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Ejtahed HS, Soroush AR, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res. 2016;48(6):349–58.CrossRefPubMedGoogle Scholar
  3. 3.
    Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. 2017;2(10):747–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48(8):735–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Ejtahed HS, Hasani-Ranjbar S, Larijani B. Human microbiome as an approach to personalized medicine. Altern Ther Health Med. 2017;23(6):8–9.PubMedGoogle Scholar
  6. 6.
    Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27(2):201–14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189–96.CrossRefPubMedGoogle Scholar
  11. 11.
    Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044(1):127–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Berthoud HR. The vagus nerve, food intake and obesity. Regul Pept. 2008;149(1–3):15–25.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of Liraglutide and Saxagliptin treatment. Sci Rep. 2016;6:33251.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of Glp-1 and improves Glycemia in male mice. Endocrinology. 2017;158(10):3416–25.CrossRefPubMedGoogle Scholar
  15. 15.
    van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018.Google Scholar
  16. 16.
    Liu H, Wang J, He T, Becker S, Zhang G, Li D, et al. Butyrate: a double-edged sword for health? Adv Nutr. 2018;9(1):21–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aguilar EC, da Silva JF, Navia-Pelaez JM, Leonel AJ, Lopes LG, Menezes-Garcia Z, et al. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice. Nutrition. 2018;47:75–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79.CrossRefPubMedGoogle Scholar
  19. 19.
    de Vadder F, Mithieux G. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J Endocrinol. 2018;236(2):R105–R8.CrossRefPubMedGoogle Scholar
  20. 20.
    De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016;24(1):151–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6(1):39–51.CrossRefGoogle Scholar
  22. 22.
    Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303–10.CrossRefPubMedGoogle Scholar
  23. 23.
    O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the Spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  2. 2.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations