Skip to main content

Advertisement

Log in

Antimicrobial activity and mechanism of anti-MRSA of phloroglucinol derivatives

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

In previous studies, authors have completed the total synthesis of several phloroglucinol natural products and synthesized a series of their derivatives, which were tested with good biological activities.

Objectives

To discover anti-MRSA lead compound and study their mechanism of action.

Methods

Phloroglucinol derivatives were tested to investigate their activities against several gram-positive strains including Methicillin-resistant Staphylococcus aureus (MRSA). The mechanism study was conducted by determining extracellular potassium ion concentration, intracellular NADPH oxidase content, SOD activity, ROS amount in MRSA and MRSA survival rate under A5 treatment. The in vitro cytotoxicity test of A5 was conducted.

Results

The activity of monocyclic compounds was stronger than that of bicyclic compounds, and compound A5 showed the best MIC value of 0.98 μg/mL and MBC value of 1.95 μg/mL, which were 4–8 times lower than that of vancomycin. The mechanism study of A5 showed that it achieved anti-MRSA effect through membrane damage, which is proved by increased concentration of extracellular potassium ion after A5 treatment. Another possible mechanism is the over ROS production induced cell death, which is suggested by observed alternation of several reactive oxygen species (ROS) related indicators including NADPH concentration, superoxide dismutase (SOD) activity, ROS content and bacterial survival rate after A5 treatment. The cytotoxicity results in vitro showed that A5 was basically non-toxic to cells.

Conclusion

Acylphloroglucinol derivative A5 showed good anti-MRSA activity, possibly via membrane damage and ROS-mediated oxidative stress mechanism. It deserves further exploration to be a potential lead for the development of new anti-MRSA agent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75. https://doi.org/10.1016/S0140-6736(17)33326-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453–64. https://doi.org/10.1038/nrmicro.2017.42.

    Article  CAS  PubMed  Google Scholar 

  3. Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol. 2012;56(Suppl 1):S1-12. https://doi.org/10.1016/S0168-8278(12)60002-6.

    Article  CAS  PubMed  Google Scholar 

  4. Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit Care. 2017;21(1):211. https://doi.org/10.1186/s13054-017-1801-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peacock SJ, Paterson GK. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84:577–601. https://doi.org/10.1146/annurev-biochem-060614-034516.

    Article  CAS  PubMed  Google Scholar 

  6. Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):e00020-e118. https://doi.org/10.1128/cmr.00020-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016;2016:2475067. https://doi.org/10.1155/2016/2475067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mun SH, Kang OH, Kong R, et al. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J Pharmacol Sci. 2018;137(4):317–23. https://doi.org/10.1016/j.jphs.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  9. Kitahara T, Aoyama Y, Hirakata Y, et al. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 2006;27(1):51–7. https://doi.org/10.1016/j.ijantimicag.2005.08.020.

    Article  CAS  PubMed  Google Scholar 

  10. Heilmann J, Winkelmann K, Sticher O. Studies on the antioxidative activity of phloroglucinol derivatives isolated from hypericum species. Planta Med. 2003;69:202–6. https://doi.org/10.1055/s-2003-38477.

    Article  CAS  PubMed  Google Scholar 

  11. Liu HX, Tan HB, Qiu SX. Antimicrobial acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. J Asian Nat Prod Res. 2016;18(6):535–41. https://doi.org/10.1080/10286020.2015.1121997.

    Article  CAS  PubMed  Google Scholar 

  12. Hua X, Yang Q, Zhang W, et al. Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol. 2018;9:619. https://doi.org/10.3389/fphar.2018.00619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacob MR, Walker LA. Natural Products and Antifungal Drug Discovery. Methods Mol Med. 2005;118:83–109. https://doi.org/10.1385/1-59259-943-5:083.

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Liu J, Jiang T, et al. Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L.) Schot. J Ethnopharmacol. 2018;226:36–43. https://doi.org/10.1016/j.jep.2018.07.030.

    Article  CAS  PubMed  Google Scholar 

  15. Lin H, Liu X, Shen Z, et al. The effect of isoflavaspidic acid PB extracted from Dryopteris fragrans (L.) Schott on planktonic and biofilm growth of dermatophytes and the possible mechanism of antibiofilm. J Ethnopharmacol. 2019;241:111956. https://doi.org/10.1016/j.jep.2019.111956.

    Article  CAS  PubMed  Google Scholar 

  16. Chen NH, Qian YR, Li W, et al. Six New Acylphloroglucinols from Dryopteris championii. Chem Biodivers. 2017;14(7). https://doi.org/10.1002/cbdv.201700001.

  17. Shi PQ. Synthesis and biological activity of fumaric acid and bleomycin compounds. Guangdong Pharmaceutical University, 2021. https://kns.cnki.net/kcms2/article/abstract?v=DxGmxfxkPoFSIbnUFVn3ilTx0dtlcyC6be1__idNCGuT7W_idJd7DmmoNLpvFY1NpVWL-wKzdNMCq8PfttMbVliNyzYRnA31Np0VuxhM16c5Umrxt_71o_PD03tIHKqa-O5n3KPc2CY=&uniplatform=NZKPT&language=CHS.

  18. Liu HY, Du WZ, et al. Study on quality standard of Dryopteris fragrans. J Guangdong Pharmaceutical University. 2016;32(1):36–40 (https://kns.cnki.net/kcms/detail/44.1413.r.20160115.1840.011.html).

    CAS  Google Scholar 

  19. Fan HQ, Shen ZB, et al. Research progress on chemical constituents of Dryopteris fragrans and their pharmacological effects in the treatment of skin diseases. Shizhen Guoyi Guoyao. 2013;24(1):199–201 (https://kns.cnki.net/kcms2/article/abstract?v=DxGmxfxkPoHR57lvp9bMq3AwUERnn-OEMwP-504UoehrJOUGtE0HihfiKGC4bbl2GgxnxwhsTzDmiu7SHPIwrPj7Z5Zq0seoIvfU_GrbMZsFD62MVYXYEptJeqThfl1Y&uniplatform=NZKPT&language=CHS).

    CAS  Google Scholar 

  20. Rahman MM, Shiu WKP, Gibbons S, et al. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. Eur J Med Chem. 2018;155:255–62. https://doi.org/10.1016/j.ejmech.2018.05.038.

    Article  CAS  PubMed  Google Scholar 

  21. Feng L, Maddox MM, Alam MZ, et al. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J Med Chem. 2014;57(20):8398–420. https://doi.org/10.1021/jm500853v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kahlmeter G, Giske CG, Kirn TJ, et al. Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J Clin Microbiol. 2019;57(9):e01129-e1219. https://doi.org/10.1128/JCM.01129-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang S, Qu X, Jiao J, et al. Felodipine enhances aminoglycosides efficacy against implant infections caused by methicillin-resistant Staphylococcus aureus, persisters and bi ofilms. Bioactive Mater. 2022;14:272–89. https://doi.org/10.1016/j.bioactmat.2021.11.019.

    Article  CAS  Google Scholar 

  24. Sun K, Metzger DW. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol. 2014;192(7):3301–7. https://doi.org/10.4049/jimmunol.1303049.

    Article  CAS  PubMed  Google Scholar 

  25. Thanh ND, Giang NTK, Quyen TH, et al. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl) thiosemicarbazones. Eur J Med Chem. 2016;123:532–43. https://doi.org/10.1016/j.ejmech.2016.07.074.

    Article  CAS  PubMed  Google Scholar 

  26. Pramanik A, Laha D, Bhattacharya D, et al. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerf. 2012;96:50–5. https://doi.org/10.1016/j.colsurfb.2012.03.021.

    Article  CAS  Google Scholar 

  27. Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A. 2001;98:14637–42. https://doi.org/10.1073/pnas.141366998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao C, Wang X, Wu L, et al. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf B Biointerf. 2019;179:17–27. https://doi.org/10.1016/j.colsurfb.2019.03.042.

    Article  CAS  Google Scholar 

  29. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, Ninth Edition (M07-A9). Wayne, PA: CLSI; 2012a.

  30. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, Eleventh Edition (M02-A11). Wayne, PA: CLSI; 2012b.

  31. Wu JW, Li BL, Tang C, et al. Callistemonols A and B, Potent Antimicrobial Acylphloroglucinol Derivatives with Unusual Carbon Skeletons from Callistemon viminalis. J Nat Prod. 2019;82(7):1917–22. https://doi.org/10.1021/acs.jnatprod.9b00064.

    Article  CAS  PubMed  Google Scholar 

  32. Xiang YQ, Liu HX, Zhao LY, et al. Callistemenonone A, a novel dearomatic dibenzofuran-type acylphloroglucinol with antimicrobial activity from Callistemon viminalis. Sci Rep. 2017;7(1):2363. https://doi.org/10.1038/s41598-017-02441-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li N, Gao C, Peng X, et al. Aspidin BB, a phloroglucinol derivative, exerts its antibacterial activity against Staphylococcus aureus by inducing the generation of reactive oxygen species. Res Microbiol. 2014;165(4):263–72. https://doi.org/10.1016/j.resmic.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  34. Gao C, Guo N, Li N, et al. Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes. Arch Dermatol Res. 2016;308(2):79–86. https://doi.org/10.1007/s00403-015-1603-x.

    Article  CAS  PubMed  Google Scholar 

  35. Yang L, Mih N, Anand A, et al. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc Natl Acad Sci U S A. 2019;116:14368–73. https://doi.org/10.1073/pnas.1905039116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jang HJ, Chung IY, Lim C, et al. Redirecting an Anticancer to an Antibacterial Hit Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol. 2019;10:350. https://doi.org/10.3389/fmicb.2019.00350.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by Innovation and strengthening project of Guangdong Pharmaceutical University- Special Projects in Key Fields of General Colleges and Universities in Guangdong Province(2022ZDZX2030) and Guangdong Province Graduate Education Innovation Program in 2021 (2021JGXM071), Medical Scientific Research Foundation of Guangdong Province (B20234214), Scientific Research Project of Guangdong Provincial Bureau of traditional Chinese Medicine (20231205).

Funding

No funding is applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianbao Ye.

Ethics declarations

Competing interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, X., Ou, J. et al. Antimicrobial activity and mechanism of anti-MRSA of phloroglucinol derivatives. DARU J Pharm Sci 32, 177–187 (2024). https://doi.org/10.1007/s40199-024-00503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-024-00503-4

Keywords

Navigation