Skip to main content

Advertisement

Log in

Artificial viruses: A nanotechnology based approach

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objectives

The main objective of this work was to review and summarise the detailed literature available on viral nanoparticle and the strategies utilised for their manufacture along with their applications as therapeutic agents.

Data acquisition

The reported literature related to development and application of virus nanoparticles have been collected from electronic data bases like ScienceDirect, google scholar, PubMed by using key words like “viral nanoparticles”, “targeted drug delivery” and “vaccines” and related combinations.

Result

From the detailed literature survey, virus nanoparticles were identified as carriers for the targeted delivery. Due to the presence of nanostructures in virus nanoparticles, these protect the drugs from the degradation in the gastrointestinal tract and in case of the delivery of gene medicine, they carry the nucleic acids to the target/susceptible host cells. Thus, artificial viruses are utilised for targeted delivery to specific organ in biomedical and biotechnological areas.

Conclusion

Thus, virus nanoparticles can be considered as viable option as drug/gene carrier in various healthcare sectors especially drug delivery and vaccine and can be explored further in future for the development of better drug delivery techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reta DH, et al. Molecular and immunological diagnostic techniques of medical viruses. Int J Microbiol. 2020;2020:1.

    Article  Google Scholar 

  2. Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie. 2019;157:38–47.

    Article  CAS  PubMed  Google Scholar 

  3. Shahgolzari M, Dianat-Moghadam H, Fiering S. Multifunctional plant virus nanoparticles in the next generation of cancer immunotherapies. In Semin Cancer Biol. 2022;86:1076–85.

  4. Alvandi N, et al. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target. 2022;30(2):151–65.

    Article  CAS  PubMed  Google Scholar 

  5. Kianpour M, Akbarian M, Uversky VN. Nanoparticles for coronavirus control. Nanomaterials. 2022;12(9):1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tng DJH, Low JGH. Current status of silica-based nanoparticles as therapeutics and its potential as therapies against viruses. Antiviral Res. 2023;210:105488.

    Article  CAS  PubMed  Google Scholar 

  7. Ball B. An introduction to viruses and techniques for their identification and characterisation. Options Méditerranéennes: Série B. Etudes et Recherches. 1999;(25):69–80.

  8. Wu Q, et al. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci. 2010;107(4):1606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Almeida JD, Waterson A. The morphology of virus-antibody interaction. In: Advances in virus research. Elsevier; 1969. p. 307–38.

    Google Scholar 

  10. Brennan FR, et al. A chimaeric plant virus vaccine protects mice against a bacterial infection. Microbiology. 1999;145(8):2061–7.

    Article  CAS  PubMed  Google Scholar 

  11. Greber UF, Gomez-Gonzalez A. Adenovirus–a blueprint for gene delivery. Curr Opin Virol. 2021;48:49–56.

    Article  CAS  PubMed  Google Scholar 

  12. Chen SC-Y, et al. Expression of multiple artificial microRNAs from a chicken miRNA126-based lentiviral vector. PLoS One. 2011;6(7):e22437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu J, et al. Progress in Bioengineering of Myotropic Adeno-Associated Viral Gene Therapy Vectors. Hum Gene Ther. 2023;34(9–10):350–64.

    Article  CAS  PubMed  Google Scholar 

  14. Gersbach CA, Gaj T, Barbas CF III. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res. 2014;47(8):2309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma Y, Nolte RJ, Cornelissen JJ. Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev. 2012;64(9):811–25.

    Article  CAS  PubMed  Google Scholar 

  16. Ajithkumar K, Pramod K. Artificial virus as trump-card to resolve exigencies in targeted gene delivery. Mini Rev Med Chem. 2018;18(3):276–86.

    Article  CAS  PubMed  Google Scholar 

  17. Patra JK, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018;16(1):1–33.

    Article  Google Scholar 

  18. Cu Y, Saltzman WM. Controlled surface modification with poly (ethylene) glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm. 2009;6(1):173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu Y, et al. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci. 2015;112(40):12360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roldão A, et al. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9(10):1149–76.

    Article  PubMed  Google Scholar 

  21. Wang Q, et al. Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chem Biol. 2002;9(7):813–9.

    Article  CAS  PubMed  Google Scholar 

  22. Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdisc Rev: Nanomed Nanobiotechnol. 2011;3(2):174–96.

    CAS  Google Scholar 

  23. Daniel M-C, et al. Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano. 2010;4(7):3853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown WL, et al. RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology. 2002;45(4–6):371–80.

    Article  CAS  PubMed  Google Scholar 

  25. Wu M, Brown WL, Stockley PG. Cell-specific delivery of bacteriophage-encapsidated ricin A chain. Bioconjug Chem. 1995;6(5):587–95.

    Article  CAS  PubMed  Google Scholar 

  26. Douglas T, et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater. 2002;14(6):415–8.

    Article  CAS  Google Scholar 

  27. Kaslow DC, Shiloach J. Production, purification and immunogenicity of a malaria transmission-blocking vaccine candidate: TBV25H expressed in yeast and purified using nickel-NTA agarose. Bio/Technology. 1994;12(5):494–9.

    Article  CAS  PubMed  Google Scholar 

  28. He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdisc Rev: Nanomed Nanobiotechnol. 2010;2(4):349–66.

    CAS  Google Scholar 

  29. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  30. Merzlyak A, Indrakanti S, Lee S-W. Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett. 2009;9(2):846–52.

    Article  CAS  PubMed  Google Scholar 

  31. Mullard A. 2017 FDA drug approvals. Nat Rev Drug Discovery. 2018;17(2):81–5.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou K, et al. Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods. Biomacromol. 2013;14(8):2593–600.

    Article  CAS  Google Scholar 

  33. Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol. 2011;22(6):901–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng Y, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol. 2020;7:489.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang T, et al. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat Commun. 2022;13(1):6649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitchell MJ, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20(2):101–24.

    Article  CAS  PubMed  Google Scholar 

  37. Gholizadeh O, et al. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J. 2022;19(1):1–22.

    Article  Google Scholar 

  38. Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev. 2020;156:214–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farooq T, et al. Nanotechnology and plant viruses: an emerging disease management approach for resistant pathogens. ACS Nano. 2021;15(4):6030–7.

    Article  CAS  PubMed  Google Scholar 

  40. Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2021;11:748–87.

    Article  CAS  PubMed  Google Scholar 

  41. Sportelli MC, et al. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials. 2020;10(4):802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alvanegh AG, et al. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother. 2021;140:111755.

    Article  CAS  PubMed  Google Scholar 

  43. Yasamineh S, et al. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnol. 2022;20(1):440.

    Article  Google Scholar 

  44. Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology. 2018;15:1–17.

    Article  Google Scholar 

  45. Wang D, Tai PW, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discovery. 2019;18(5):358–78.

    Article  CAS  PubMed  Google Scholar 

  46. Choi K-M, et al. Chimeric capsid protein as a nanocarrier for siRNA delivery: stability and cellular uptake of encapsulated siRNA. ACS Nano. 2011;5(11):8690–9.

    Article  CAS  PubMed  Google Scholar 

  47. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 2006;13(4):283–7.

    Article  CAS  PubMed  Google Scholar 

  48. Harrington K, et al. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discovery. 2019;18(9):689–706.

    Article  CAS  PubMed  Google Scholar 

  49. Li R, et al. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci. 2020;15(3):311–25.

    Article  PubMed  Google Scholar 

  50. Chackerian B, et al. Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-β without concomitant T cell responses. Vaccine. 2006;24(37–39):6321–31.

  51. Greenwood B, Salisbury D, Hill AV. Vaccines and global health. The Royal Society. 2011;366:2733–42.

    Google Scholar 

  52. McElrath MJ, Walker BD. Is an HIV vaccine possible? J Acquired Immune Deficiency Syndromes. 2012;60(Supplement 2):S41.

    Article  Google Scholar 

  53. Garcea RL, Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol. 2004;15(6):513–7.

    Article  CAS  PubMed  Google Scholar 

  54. Klinman DM et al. DNA vaccines: safety and efficacy issues. In Springer Semin Immunopathol. 1997;19:245–56.

  55. Pushko P, Pumpens P, Grens E. Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology. 2013;56(3):141–65.

    Article  CAS  PubMed  Google Scholar 

  56. Huang X, et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat Nanotechnol. 2022;17(10):1027–37.

    Article  CAS  PubMed  Google Scholar 

  57. Sominskaya I, et al. Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. Clin Vaccine Immunol. 2010;17(6):1027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chan JK, Berek JS. Impact of the human papilloma vaccine on cervical cancer. J Clin Oncol. 2007;25(20):2975–82.

    Article  CAS  PubMed  Google Scholar 

  59. Lico C, Chen Q, Santi L. Viral vectors for production of recombinant proteins in plants. J Cell Physiol. 2008;216(2):366–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohsen MO, et al. Virus-like particles for vaccination against cancer. Wiley Interdisc Rev: Nanomed Nanobiotechnol. 2020;12(1):e1579.

    CAS  Google Scholar 

  61. Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines. 2013;12(2):129–41.

    Article  CAS  PubMed  Google Scholar 

  62. Godi A, et al. Durability of the neutralizing antibody response to vaccine and non-vaccine HPV types 7 years following immunization with either Cervarix® or Gardasil® vaccine. Vaccine. 2019;37(18):2455–62.

    Article  CAS  PubMed  Google Scholar 

  63. Yang LP. Recombinant trivalent influenza vaccine (Flublok®): a review of its use in the prevention of seasonal influenza in adults. Drugs. 2013;73(12):1357–66.

    Article  CAS  PubMed  Google Scholar 

  64. Lee SH. Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil®. J Inorg Biochem. 2012;117:85–92.

    Article  CAS  PubMed  Google Scholar 

  65. Jagadesh A, et al. Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Adv Virol. 2016;161:2087–94.

    CAS  Google Scholar 

  66. Obermeyer AC, et al. Multivalent viral capsids with internal cargo for fibrin imaging. PLoS One. 2014;9(6):e100678.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wojnarowska-Nowak R, et al. Colloidal quantum dots conjugated with human serum albumin–interactions and bioimaging properties. Opto-Electron Rev. 2017;25(2):137–47.

    Article  Google Scholar 

  68. Ghosh D, et al. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci. 2014;111(38):13948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qazi S, et al. P22 viral capsids as nanocomposite high-relaxivity MRI contrast agents. Mol Pharm. 2013;10(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  70. Min J, et al. Implementation of p22 viral capsids as intravascular magnetic resonance T 1 contrast conjugates via site-selective attachment of Gd (III)-chelating agents. Biomacromol. 2013;14(7):2332–9.

    Article  CAS  Google Scholar 

  71. Brinkman M, et al. Beneficial therapeutic effects with different particulate structures of murine polyomavirus VP1-coat protein carrying self or non-self CD8 T cell epitopes against murine melanoma. Cancer Immunol Immunother. 2005;54(6):611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bolli E, et al. A Virus-Like-Particle immunotherapy targeting Epitope-Specific anti-xCT expressed on cancer stem cell inhibits the progression of metastatic cancer in vivo. OncoImmunology. 2018;7(3):e1408746.

    Article  PubMed  Google Scholar 

  73. Cubas R, et al. Chimeric Trop2 virus-like particles: a potential immunotherapeutic approach against pancreatic cancer. J Immunother. 2011;34(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  74. NCT03618641. Treatment of melanoma stage IIIB/C/D and lymph node disease 2023 [cited 2023 2023]. https://www.clinicaltrials.gov/ct2/show/NCT03618641

  75. RudanNjavro J, et al. Beneficial Effect of ACI-24 Vaccination on Aβ Plaque Pathology and Microglial Phenotypes in an Amyloidosis Mouse Model. Cells. 2023;12(1):79.

    Article  CAS  Google Scholar 

  76. Davtyan H, et al. Immunogenicity of DNA-and recombinant protein-based Alzheimer disease epitope vaccines. Hum Vaccin Immunother. 2014;10(5):1248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bruckman MA, VanMeter A, Steinmetz NF. Nanomanufacturing of tobacco mosaic virus-based spherical biomaterials using a continuous flow method. ACS Biomater Sci Eng. 2015;1(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  78. Kash N, et al. Safety and efficacy data on vaccines and immunization to human papillomavirus. J Clin Med. 2015;4(4):614–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruckman MA, Czapar AE, Steinmetz NF. Drug-loaded plant-virus based nanoparticles for cancer drug delivery. Virus-Derived Nanopart Adv Technol: Methods Protocol. 2018;425–36.

  80. Azizgolshani O, et al. Reconstituted plant viral capsids can release genes to mammalian cells. Virology. 2013;441(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  81. Ren Y, Wong SM, Lim L-Y. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug Chem. 2007;18(3):836–43.

    Article  CAS  PubMed  Google Scholar 

  82. Shlomai A, et al. The “Trojan horse” model-delivery of anti-HBV small interfering RNAs by a recombinant HBV vector. Biochem Biophys Res Commun. 2009;390(3):619–23.

    Article  CAS  PubMed  Google Scholar 

  83. Zdanowicz M, Chroboczek J. Virus-like particles as drug delivery vectors. Acta Biochim Pol. 2016;63(3):469–73.

    Article  CAS  PubMed  Google Scholar 

  84. Toporkiewicz M et al. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomed. 2015:1399–14.

  85. Ashley CE, et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5(7):5729–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70.

    Article  CAS  PubMed  Google Scholar 

  87. Parodi A, et al. Bio-inspired engineering of cell-and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68.

    Article  CAS  PubMed  Google Scholar 

  88. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Venkataraman S, et al. Plant virus nanoparticles for anti-cancer therapy. Front Bioeng Biotechnol. 2021;9:642794.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Dean of school of pharmaceutical sciences, Lovely Professional University for providing necessary support to complete this article.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurvinder Singh.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, S., Kumar, R., Chaudhary, M. et al. Artificial viruses: A nanotechnology based approach. DARU J Pharm Sci 32, 339–352 (2024). https://doi.org/10.1007/s40199-023-00496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00496-6

Keywords

Navigation