Skip to main content

Advertisement

Log in

Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer’s disease in a rat/mouse model: a systematic review

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Alzheimer’s disease (AD) is a neurological disease that causes memory loss over time. Current therapies are limited and frequently inadequate. Epigallocatechin gallate (EGCG), has antioxidant, anti-inflammatory, antifibrosis, anti-remodeling and tissue-protective qualities that may be effective in treatment of different diseases, including AD. Because of nanoparticles’ high surface area, they can enhance solubility, stability, pharmacokinetics and biodistribution, and diminish toxicities. Besides, lipid nanoparticles have a high binding affinity that can enhance the rate of drug transport across BBB. So, EGCG nanoparticles represent a promising treatment for AD.

Objectives

This systematic review sought to assess the efficacy of EGCG nanoparticles against AD in rat/mouse models.

Methods

Study was conducted in accordance with PRISMA guidelines, and the protocol was registered in PROSPERO. Electronic databases were searched to discover relevant studies published up to October 2022.

Results

Two studies met the inclusion criteria out of 1338 and were included in this systematic review. Collectively, the results indicate that EGCG has a significant potential for reducing AD pathology and improving cognitive deficits in rat/mouse models. The formulated particles were in the nanometer range, as indicated by TEM, with good particle size control and stability. EGCG nanoparticles showed superior pharmacokinetic characteristics and improved blood-brain barrier permeability, and increased brain bioavailability compared to free EGCG. Additionally, nanoEGCG were more effective in modulating oxidative stress than free formulation and decreased AChE in the cortex and hippocampus of AlCl3-treated rats.

Conclusion

This systematic analysis of the two studies included showed that EGCG nanoparticles are efficacious as a potential therapeutic intervention for AD in rat/mouse models. However, limited number of studies found indicates insufficient data in this research point that requires further investigation by experimental studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article [and its supplementary material].

References

  1. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541–54. https://doi.org/10.2147/IJN.S200490.

    Article  CAS  Google Scholar 

  2. Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci. 2022;14: 937486.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vellone E, Piras G, Talucci C, Cohen MZ. Quality of life for caregivers of people with Alzheimer’s disease. J Adv Nurs. 2008;61:222–31.

    Article  PubMed  Google Scholar 

  4. Barbe C, Jolly D, Morrone I, Wolak-Thierry A, Dramé M, Novella J-L, et al. Factors associated with quality of life in patients with Alzheimer’s disease. BMC Geriatr. 2018;18:159.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar A, Sidhu J, Goyal A, Tsao JW. Alzheimer Disease. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  6. Silva MVF, Loures C, de Alves MG, de Souza LCV, Borges LC. Carvalho M Das G. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26:33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25: 5789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bature F, Guinn B-A, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open. 2017;7: e015746.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weller J, Budson A. Current understanding of Alzheimer’s Disease diagnosis and treatment. F1000Res. 2018;7:F1000 Faculty Rev-1161.

  10. Alhazmi HA, Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm J. 2022;30:1755–64 (20221012th ed).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Youn K, Ho C-T, Jun M. Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s Disease: an overview of pre-clinical studies focused on β-amyloid peptide. Food Sci Hum Wellness. 2022;11:483–93.

    Article  CAS  Google Scholar 

  12. Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Front Neurosci. 2021;15:718188 (20210914th ed).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): new therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules. 2022;12: 371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Menard C, Bastianetto S, Quirion R. Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci. 2013;7:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naqvi S, Panghal A, Flora SJS. Nanotechnology: a promising approach for delivery of neuroprotective drugs. (n.d.).

  16. Curley SM, Cady NC. Biologically-derived nanomaterials for targeted therapeutic delivery to the brain. Sci Prog. 2018;101:273–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep. 2021;14(5):42. https://doi.org/10.3892/br.2021.1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.

    Article  Google Scholar 

  19. Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. Biomed Res Int. 2021;2021:9322282. https://doi.org/10.1155/2021/9322282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribarič S. Nanotechnology therapy for alzheimer’s disease memory impairment attenuation. LID – LID – 1102. (n.d.). https://doi.org/10.3390/ijms22031102

  21. Cano A, Ettcheto M, Chang J-H, Barroso E, Espina M, Kühne BA, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s Disease mice model. J Controlled Release. 2019;301:62–75.

    Article  CAS  Google Scholar 

  22. Zhang J, Zhou X, Yu Q, Yang L, Sun D, Zhou Y, et al. Epigallocatechin-3-gallate (EGCG)-Stabilized selenium nanoparticles coated with Tet-1 peptide to reduce Amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces. 2014;6:8475–87.

    Article  CAS  PubMed  Google Scholar 

  23. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Reviews. 2015;4:1–9.

    Article  Google Scholar 

  24. Stone PW. Popping the (PICO) question in research and evidence-based practice. Appl Nurs Research: ANR. 2002;15:197–8.

    Article  PubMed  Google Scholar 

  25. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14: 43.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA. EGCG Nanoparticles Attenuate Aluminum Chloride Induced Neurobehavioral Deficits, Beta Amyloid and Tau Pathology in a Rat Model of Alzheimer’s Disease. Front Aging Neurosci. 2018;10:244. https://doi.org/10.3389/fnagi.2018.00244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan C, Wang C, Shao X, Shu Q, Hu X, Guan P, et al. Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer’s related amyloid-β aggregation and inhibiting fungal Infection. Mater Today Bio. 2021;12: 100167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in Medicine. Curr Drug Targets. 2015;16:1671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807–21. 20110730th ed.

  31. Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem. 2016;37:1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in combating neuronal Dysregulated Signaling pathways: recent approaches to the nanoformulations of Phytochemicals and synthetic Drugs against neurodegenerative Diseases. Int J Nanomedicine. 2022;17:299–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dube A, Nicolazzo JA, Larson I. Assessment of plasma concentrations of (-)-epigallocatechin gallate in mice following administration of a dose reflecting consumption of a standard green tea beverage. Food Chem. 2011;128:7–13.

    Article  CAS  PubMed  Google Scholar 

  34. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s Disease. Int J Pharm. 2010;389:207–12. 20100118th ed.

  35. Zhou Y, Liyanage PY, Devadoss D, Guevara LRR, Cheng L, Graham RM, et al. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale. 2019;11:22387–97.

    Article  CAS  PubMed  Google Scholar 

  36. Yang H, Li X, Zhu L, Wu X, Zhang S, Huang F, et al. Heat shock protein inspired nanochaperones restore Amyloid-β homeostasis for preventative therapy of Alzheimer’s disease. Adv Sci (Weinh). 2019;6: 1901844.

    Article  CAS  PubMed  Google Scholar 

  37. Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, et al. Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med. 2013;5:194re2.

    Article  PubMed  Google Scholar 

  38. Song J. Animal Model of Aluminum-Induced Alzheimer’s disease. Adv Exp Med Biol. 2018;1091:113–27.

    Article  CAS  PubMed  Google Scholar 

  39. Colomina MT, Peris-Sampedro F. Aluminum and Alzheimer’s disease. Adv Neurobiol. 2017;18:183–97.

    Article  PubMed  Google Scholar 

  40. Campbell A. The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant. 2002;17(Suppl 2):17–20.

    Article  CAS  PubMed  Google Scholar 

  41. ELBini-Dhouib I, Doghri R, Ellefi A, Degrach I, Srairi-Abid N, Gati A. Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer’s Disease. Molecules. 2021;26(10):3011. https://doi.org/10.3390/molecules26103011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Othman MZ, Hassan Z, Che Has AT. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Anim. 2022;71:264–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cherniack EP, Govorushko S. To bee or not to bee: the potential efficacy and safety of bee venom acupuncture in humans. Toxicon. 2018;154:74–8.

    Article  CAS  PubMed  Google Scholar 

  44. Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L, Villegas S. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s Disease. Neural Regen Res. 2022;17:1666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.

    Article  CAS  PubMed  Google Scholar 

  46. Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J. 2016;15:60.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rees TM, Brimijoin S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc). 2003;39:75–83.

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z-R, Huang J-B, Yang S-L, Hong F-F. Role of cholinergic signaling in alzheimer’s disease. Molecules. 2022;27.

  49. Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M. Oxidative Stress and Beta Amyloid in Alzheimer’s Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel). 2021;10(9):1479. https://doi.org/10.3390/antiox10091479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vallée A, Vallée J-N, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer’s disease by targeting the WNT/β-catenin pathway. Aging. 2020;12:3095–113.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luca A, Calandra C, Luca M. Molecular bases of Alzheimer’s disease and neurodegeneration: the role of neuroglia. Aging Dis. 2018;9:1134.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Michalska P, León R. When it comes to an end: oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants. 2020;9: 740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sayas CL, Ávila J. GSK-3 and tau: a key duet in Alzheimer’s disease. Cells. 2021;10: 721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Llorens-Marítin M, Jurado J, Hernández F, Ávila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014;7:46.

    PubMed Central  Google Scholar 

  55. King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther. 2014;141:1–12.

    Article  CAS  PubMed  Google Scholar 

  56. Lin L, Cao J, Yang S-S, Fu Z-Q, Zeng P, Chu J, et al. Endoplasmic reticulum stress induces spatial memory deficits by activating GSK-3. J Cell Mol Med. 2018;22:3489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee Y, Bortolotto ZA, Bradley CA, Sanderson TM, Zhuo M, Kaang B-K, et al. The GSK-3 inhibitor CT99021 enhances the acquisition of spatial learning and the accuracy of spatial memory. Front Mol Neurosci. 2022;14: 804130.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, et al. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci. 2012;5:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu L-Q, Wang S-H, Liu D, Yin Y-Y, Tian Q, Wang X-C, et al. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci. 2007;27:12211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mansvelder HD, Verhoog MB, Goriounova NA. Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Curr Opin Neurobiol. 2019;54:186–93.

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Lin F, Cai F, Yan W, Zhou Q, Xie L. Microcystin-LR inhibited hippocampal long-term potential via regulation of the glycogen synthase kinase-3β pathway. Chemosphere. 2013;93:223–9.

    Article  CAS  PubMed  Google Scholar 

  62. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–31.

    Article  CAS  PubMed  Google Scholar 

  63. Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 2019;12:1–11.

    Article  Google Scholar 

Download references

Funding

No fund.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Maha K. A. Khalifa], [Heba A. Eassa]; methodology: [Somaia A. Abdel-Sattar], [Omnya M. Amin], [Neveen A. Kohaf], [Heba S. Zaky], [Marwa A. Abd El‑Fattah], [Kamilia H. A. Mohammed], [Noha M Badawi], [Ihab Mansoor], [Maha K. A. Khalifa], [Heba A. Eassa]; validation: [Maha K. A. Khalifa], [Heba A. Eassa]; formal analysis: [Maha K. A. Khalifa], [Heba A. Eassa]; investigation: [Maha K. A. Khalifa], [Heba A. Eassa]; writing—original draft preparation, Somaia A. Abdel-Sattar], [Omnya M. Amin], [Neveen A. Kohaf], [Heba S. Zaky], [Marwa A. Abd El‑Fattah], [Kamilia H. A. Mohammed], [Noha M Badawi], [Ihab Mansoor], [Maha K. A. Khalifa], [Heba A. Eassa]; writing—review and editing: [Maha K. A. Khalifa], [Heba A. Eassa]; final approval of the version to be published: [Somaia A. Abdel-Sattar], [Omnya M. Amin], [Neveen A. Kohaf], [Heba S. Zaky], [Marwa A. Abd El‑Fattah], [Kamilia H. A. Mohammed], [Noha M Badawi], [Ihab Mansoor], [Maha K. A. Khalifa], [Heba A. Eassa]; Supervision: [Maha K. A. Khalifa], [Heba A. Eassa].

Corresponding author

Correspondence to Heba A. Eassa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 474 KB)

ESM 1

(XLSX 23.8 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, M.K.A., Abdel-Sattar, S.A., Amin, O.M. et al. Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer’s disease in a rat/mouse model: a systematic review. DARU J Pharm Sci 32, 319–337 (2024). https://doi.org/10.1007/s40199-023-00494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00494-8

Keywords

Navigation