Skip to main content

Advertisement

Log in

Electrochemical evaluation of nivolumab used in cancer treatment with differential pulse voltammetry: A novel approach with single-use pencil graphite electrode

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objectives

Nivolumab is used in a treatment called immunotherapy, which helps the immune system cells to attack cancer cells. The electrochemical properties and quantification of this drug were performed using single-use pencil tips.

Evidence acquisition

Here, a selective voltammetric method for the determination and electrochemical characterization of Nivolumab used in cancer therapy was developed for the first time using a disposable pencil electrode by cyclic voltammetry and differential pulse voltammetry techniques. Nivolumab exhibited an anodic signal at +0.879 V (vs. Ag/AgCl) in PBS (pH 3.0, 0.02 M NaCl) medium.

Results

This procedure showed a linear response in phosphate buffer solutions (pH 3.0, 0.02 M NaCl) media within the concentration range of 0.01 mg mL-1 to 0.07 mg mL-1 and limit of detection and the limit of quantification values were determined to be 2.49 μg mL-1 and 8.30 μg mL-1, respectively.

Conclusions

The developed method offers an important analytical approach for the detection and characterization of NIVO. Precisely measuring and monitoring the levels of such drugs in real sample analyses or biological samples is critical for evaluating response to treatment, optimizing treatment strategies. Therefore, the method was applied to real sample analyses. Voltammetric results developed using PG electrode were compared with UV-Vis results. It has been determined that the results obtained are compatible with each other.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the fndings of this study will not be made publicly available.

References

  1. Issaad FZ, Tomé LI, Marques NV, Mouats C, Diculescu VC, Oliveira-Brett AM. Bevacizumab anticancer monoclonal antibody: native and denatured redox behaviour. Electrochim Acta. 2016;206:246–53. https://doi.org/10.1016/j.electacta.2016.04.097.

    Article  CAS  Google Scholar 

  2. Tomé LI, Marques NV, Diculescu VC, Oliveira-Brett AM. In situ dsDNA-bevacizumab anticancer monoclonal antibody interaction electrochemical evaluation. Anal Chim Acta. 2015;898:28–33. https://doi.org/10.1016/j.aca.2015.09.049.

    Article  CAS  PubMed  Google Scholar 

  3. Lee JY, Lee HT, Shin W, Chae J, Choi J, Kim SH, Heo Y. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat Commun. 2016;7(1):13354. https://doi.org/10.1038/ncomms13354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Brahmer J. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: results from the CA209-003 study. J Clin Oncol. 2018;36(17):1675–84. https://doi.org/10.1200/JCO.2017.77.0412.

    Article  CAS  PubMed  Google Scholar 

  5. Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Postow MA. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–68. https://doi.org/10.1016/S1470-2045(16)30366-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Sharma P. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://doi.org/10.1056/nejmoa1510665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Hodi FS. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. https://doi.org/10.1056/nejmoa1200690.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Sznol M. Safety, activity, and immune correlates of ANTI–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/nejmoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enache TA, Oliveira-Brett AM. Phenol and Para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem. 2011;655(1):9–16. https://doi.org/10.1016/j.jelechem.2011.02.022.

    Article  CAS  Google Scholar 

  10. Pento JT. Monoclonal antibodies for the treatment of cancer. Anticancer Res. 2017;37(11):5935–59. https://doi.org/10.21873/anticanres.12040.

    Article  CAS  PubMed  Google Scholar 

  11. Derenne A, Derfoufi KM, Cowper B, Delporte C, Goormaghtigh E. FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies. Anal Chim Acta. 2020;1112:62–71. https://doi.org/10.1016/j.aca.2020.03.038.

    Article  CAS  PubMed  Google Scholar 

  12. Abe K, Shibata K, Naito T, Karayama M, Hamada E, Maekawa M, Kawakami J. Quantitative LC-MS/MS method for NIVO’ nun human serum using IgG purification and immobilized tryptic digestion. Anal Methods. 2020;12(1):54–62. https://doi.org/10.1039/C9AY02087J.

    Article  CAS  Google Scholar 

  13. Gopinath K, Yanadirao M, Pavani Y, Rao MS. A study of method development, validation and forced degradation for simultaneous quantification of cabozantinib and NIVO in bulk and pharmaceutical dosage form by RP-HPLC. Asian J Pharm Clin Res. 2019;12(2):102–6. https://doi.org/10.22159/ajpcr.2019.v12i2.29013.

    Article  CAS  Google Scholar 

  14. Puszkiel A, Noé G, Boudou-Rouquette P, Le-Cossec C, Arrondeau J, Giraud JS, Blanchet B. Development and validation of an ELISA method for the quantification of NIVO in plasma from non-small-cell lung cancer patients. J Pharm Biomed Anal. 2017;139:30–6. https://doi.org/10.1016/j.jpba.2017.02.041.

    Article  CAS  PubMed  Google Scholar 

  15. Rauthan A, Patil P, Somashekhar SP, Zaveri S. Real world experience of adverse events with immunotherapy using PD1 inhibitors: Single center experience from India. Ann Oncol. 2018;29:26. https://doi.org/10.1093/annonc/mdy430.012.

    Article  Google Scholar 

  16. Önal G Investigation of the electrochemical properties of vinblastine on boron-doped diamond electrode treated with anodic pre-treatment in anionic surfactant medium. Diam Relat Mater. 2023; 109699. https://doi.org/10.1016/j.diamond.2023.109699

  17. McCormick WJ, Robertson PK, Skillen N, McCrudden D. The first electrochemical evaluation and voltammetric detection of the insecticide emamectin benzoate using an unmodified boron-doped diamond electrode. Results Chem. 2023;5:100865. https://doi.org/10.1016/j.rechem.2023.100865.

    Article  CAS  Google Scholar 

  18. Budak F, Cetinkaya A, Kaya SI, Atici EB, Ozkan SA. Sensitive determination and electrochemical evaluation of anticancer drug tofacitinib in pharmaceutical and biological samples using glassy carbon and boron-doped diamond electrodes. Diam Relat Mater. 2023;133:109751. https://doi.org/10.1016/j.diamond.2023.109751.

    Article  CAS  Google Scholar 

  19. Hatimuria M, Phukan P, Bag S, Ghosh J, Gavvala K, Pabbathi A, Das J. Green carbon dots: Applications in development of electrochemical sensors, assessment of toxicity as well as anticancer properties. Catalysts. 2023;13(3):537. https://doi.org/10.3390/catal13030537.

    Article  CAS  Google Scholar 

  20. Mathew S, Thara CR, John N, Mathew B. Carbon dots from green sources as efficient sensor and as anticancer agent. J Photochem Photobiol A Chem. 2023;434:114237. https://doi.org/10.1016/j.jphotochem.2022.114237.

    Article  CAS  Google Scholar 

  21. Liang K, Pan X, Chen Y, Huang, S. Anti-ovarian cancer actions and pharmacological targets of plumbagin. Naunyn Schmiedeberg's Arch Pharmacol. 2023; 1-6. https://doi.org/10.1007/s00210-023-02393-w

  22. Önal G, Levent A. Electrochemical evaluation and determination of vindesine used in cancer chemotherapy at disposable pencil graphite electrode by voltammetric method. Monatshefte für Chemie-Chem Mon. 2023;154(2):205–13. https://doi.org/10.1007/s00706-023-03038-7.

    Article  CAS  Google Scholar 

  23. Chaudhary R, Nohwal B, Bhardwaj H, Pundir CS. HER2 targeted noninvasive immunosensor based on pencil graphite electrode for detection of breast cancer. Sensors Int. 2023;4:100238. https://doi.org/10.1016/j.sintl.2023.100238.

    Article  Google Scholar 

  24. Mahmoudi-Moghaddam H, Garkani-Nejad Z. A new electrochemical DNA biosensor for determination of anti-cancer drug chlorambucil based on a polypyrrole/flower-like platinum/NiCo 2 O 4/pencil graphite electrode. RSC Adv. 2022;12(8):5001–11. https://doi.org/10.1039/D1RA08291D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiliç A, Aslan M, Önal G, Levent A. Firstly electrochemical investigetions and determination of anticoagulant drug edoxaban at single-use pencil graphite electrode: an eco-friendly and cost effective voltammetric method. DARU J Pharm Sci. 2023; 1-9. https://doi.org/10.1007/s40199-023-00478-8

  26. Göktaş D, Talay Pınar P. First report for the electrochemical determination and proposed mechanism of poly (ADP ribose) polymerase inhibitor and new smart anticancer drug olaparib. Monatshefte für Chemie-Chem Mon 2023; 1-8. https://doi.org/10.1007/s00706-023-03069-0

  27. Kalambate PK, Larpant N, Kalambate RP, Niamsi W, Primpray V, Karuwan C, Laiwattanapaisal W. A portable smartphone-compatible ratiometric electrochemical sensor with ultrahigh sensitivity for anticancer drug mitoxantrone sensing. Sensors Actuators B: Chemical. 2023;378:133103. https://doi.org/10.1016/j.snb.2022.133103.

    Article  CAS  Google Scholar 

  28. Kozak J, Tyszczuk-Rotko K, Sztanke K, Sztanke M. Sensitive and selective voltammetric sensor based on anionic surfactant-modified screen-printed carbon for the quantitative analysis of an anticancer active fused azaisocytosine-containing congener. Int J Mol Sci. 2023;24(1):564. https://doi.org/10.3390/ijms24010564.

    Article  CAS  Google Scholar 

  29. Shi J, Ning J, Hu G, Guo W, Zhou Y. Preparation of panchromatic carbon dots by drug function preservation strategy and its intracellular application for cancer diagnosis and therapeutics. Appl Surf Sci. 2023;618:156564. https://doi.org/10.1016/j.apsusc.2023.156564.

    Article  CAS  Google Scholar 

  30. Machini WB, Marques NV, Oliveira-Brett AM. Nivolumab anticancer monoclonal antibody native and denatured direct electrochemistry at a glassy carbon electrode. J Electroanal Chem. 2019;851:113251. https://doi.org/10.1016/j.jelechem.2019.113251.

    Article  CAS  Google Scholar 

  31. Torrinha Á, Jiyane N, Sabela M, Bisetty K, Montenegro MC, Araújo AN. Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. Sci Rep. 2020;10(1):16535. https://doi.org/10.1038/s41598-020-73635-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Kawde AN. Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta. 2001;431(2):219–24. https://doi.org/10.1016/S0003-2670(00)01318-0.

    Article  CAS  Google Scholar 

  33. Wang, J., Kawde, A. N., & Sahlin, E. Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst. n.d.; 125(1):5-7. https://doi.org/10.1039/A907364G

  34. Levent A, Yardim Y, Senturk Z. Voltammetric behavior of nicotine at pencil graphite electrode and its enhancement determination in the presence of anionic surfactant. Electrochim Acta. 2009;55(1):190–5. https://doi.org/10.1016/j.electacta.2009.08.035.

    Article  CAS  Google Scholar 

  35. Megalamani Manjunath B, Patil Yuvarajgouda N, Nandibewoor Sharanappa T. A novel CTN-Fe3O4/g-C3N4 modified green synthetic sensor for electro-sensing of phenylbutazone. Mater Sci Semicond Process. 2023;166:107750. https://doi.org/10.1016/j.mssp.2023.107750.

    Article  CAS  Google Scholar 

  36. Patil Yuvarajgouda N, Megalamani Manjunath B, Nandibewoor Sharanappa T. Graphitic carbon nitride infused with PVA-mn: ZnS modified carbon sensor for electrochemical investigation of metoclopramide hydrochloride. Diam Relat Mater. 2023;138:110254. https://doi.org/10.1016/j.diamond.2023.110254.

    Article  CAS  Google Scholar 

  37. Megalamani Manjunath B, Patil Yuvarajgouda N, Nandibewoor Sharanappa T. YSZ/MoS2 modified carbon-based sensor for the determination of muscle relaxant agent chlorzoxazone: A novel electroanalytical strategy. Inorg Chem Commun. 2023;155:111074. https://doi.org/10.1016/j.inoche.2023.111074.

    Article  CAS  Google Scholar 

  38. Megalamani Manjunath B, Patil Yuvarajgouda N, Nandibewoor Sharanappa T. Low-Cost N-Rich graphitic carbon nitride infused with anionic micellar solution sensor for highly sensitive voltammetric determination of vasodilator drug hydralazine hydrochloride. J Electrochem Soc. 2022;169(9):096501. https://doi.org/10.1149/1945-7111/ac8c00.

    Article  CAS  Google Scholar 

  39. Laviron E. The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem Interfacial Electrochem. 1979;100(1–2):263–70. https://doi.org/10.1016/S0022-0728(79)80167-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Dicle University Scientific Research and Projects Board (DUBAP) with Project No: FB-21012. It was carried out within the scope of PhD thesis numbered 10512029. 

Author information

Authors and Affiliations

Authors

Contributions

Mehmet Aslan: Conceptualization, Methodology, Software, Investigation, Writing - original draft. Fırat Aydın: Conceptualization, Methodology, Data curation, Validation. Abdulkadir Levent: Validation, Data curation, Writing - original draft, Writing - review & editing, Supervision. All authors read and approved the fnal version of the manuscript.

Corresponding author

Correspondence to Abdulkadir Levent.

Ethics declarations

Declarations

All authors certify that they have no afliations with or involvement in any organization or entity with any fnancial interest or non-fnancial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

Safety data retrieved from the spontaneous reporting process are anonymous and concur with ethical standards. Therefore, there was no further requirement for the ethical measure.

Conflict of interest

The authors declare no confict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1233 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, M., Aydın, F. & Levent, A. Electrochemical evaluation of nivolumab used in cancer treatment with differential pulse voltammetry: A novel approach with single-use pencil graphite electrode. DARU J Pharm Sci 32, 109–120 (2024). https://doi.org/10.1007/s40199-023-00491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00491-x

Keywords

Navigation