Skip to main content

Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms

Abstract

Objectives

Scutellaria baicalensis (SB) has been traditionally used to combat a variety of conditions ranging from ischemic heart disease to cancer. The protective effects of SB are due to the action of two main flavonoids baicalin (BA) and baicalein (BE). This paper aimed to provide a narrative review of the protective and antidotal effects of SB and its main constituents against natural toxicities and physical hazards.

Evidence acquisition

Scientific databases Medline, Scopus, and Web of Science were thoroughly searched, based on different keywords for in vivo, in vitro and clinical studies which reported protective or therapeutic effects of SB or its constituents in natural and physical toxicities.

Results

Numerous studies have reported that treatment with BE, BA, or total SB extract prevents or counteracts the detrimental toxic effects of various natural compounds and physical hazards. The toxic agents include mycotoxins, lipopolysaccharide, multiple plants and animal-derived substances as well as physical factors which negatively affected vital organs such as CNS, liver, kidneys, lung and heart. Increasing the expression of radical scavenging enzymes and glutathione content as well as inhibition of pro-inflammatory cytokines and pro-apoptotic mediators were important mechanisms of action.

Conclusion

Different studies on the Chinese skullcap have exhibited that its total root extract, BA or BE can act as potential antidotes or protective agents against the damage induced by natural toxins and physical factors by alleviating oxidative stress and inflammation. However, the scarcity of high-quality clinical evidence means that further clinical studies are required to reach a more definitive conclusion.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data sharing not applicable – no new data generated.

Abbreviations

AA:

aristolochic acid

AFB1 :

aflatoxin B1

Akt:

protein kinase B

AMA:

antimycin A

BA:

baicalin

BE:

baicalein

CAT:

catalase

Con A:

concanavalin A

COX-2:

cyclooxygenase-2

DON:

deoxynivalenol

ERK:

extracellular signal-regulated kinase

Hla:

α-hemolysin

HO-1:

heme oxygenase-1

HSP:

heat shock protein

IL:

interleukin

iNOS:

inducible nitric oxide synthase

LPS:

lipopolysaccharide;

MAPK:

mitogen-activated protein kinase

MCT:

monocrotaline

MDA:

malondialdehyde

MMP:

matrix metalloproteinase

mTOR:

mammalian target of rapamycin

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP3:

(NOD)-like receptor protein 3

NO:

nitric oxide

Nrf2:

nuclear factor erythroid 2-related factor 2

OA:

okadaic acid

PGE2 :

prostaglandin E2

PI3K:

phosphoinositide 3-kinase

PP:

protein phosphatase

PVL:

Panton-Valentine leukocidin

RIP:

ribosome-inactivation protein

ROS:

radical oxygen species

SB:

Scutellatia baicalensis

SBE:

Scutellatia baicalensis extract

SOD:

superoxide dismutase

Stxs:

shiga-like toxins

TCM:

traditional chinese medicine

TLR:

toll-like receptor

TNF-α:

tumor necrosis factor-α

References

  1. Srinivas NR. Baicalin, an emerging multi-therapeutic agent: Pharmacodynamics, pharmacokinetics, and considerations from drug development perspectives. Xenobiotica. 2010;40:357–67.

    CAS  PubMed  Article  Google Scholar 

  2. Lu L, Guo Q, Zhao L. Overview of Oroxylin A: A Promising Flavonoid Compound. Phytother Res. 2016;30:1765–74.

    CAS  PubMed  Article  Google Scholar 

  3. Sharifi-Rad J, Herrera-Bravo J, Salazar LA, Shaheen S, Abdulmajid Ayatollahi S, Kobarfard F, et al. The Therapeutic Potential of Wogonin Observed in Preclinical Studies. Tan S, editor. Evidence-Based Complement Altern Med. 2021;2021:1–9.

  4. Wozniak D, Drys A, Matkowski A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat Prod Res. 2015;29:1567–70.

    CAS  PubMed  Article  Google Scholar 

  5. Shieh DE, Liu LT, Lin CC. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res Greece. 2000;20:2861–5.

    CAS  Google Scholar 

  6. Huang Y, Tsang SY, Yao X, Chen ZY. Biological properties of baicalein in cardiovascular system. Curr Drug Targets - Cardiovasc Haematol Disord. 2005;5:177–84.

    CAS  PubMed  Article  Google Scholar 

  7. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Baicalein as a potent neuroprotective agent: A review. Biomed. Pharmacother. 2017;95:1021–32.

  8. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci. 2018;8:104.

    PubMed Central  Article  CAS  Google Scholar 

  9. Li Y, Zhao J, Hölscher C. Therapeutic Potential of Baicalein in Alzheimer’s Disease and Parkinson’s Disease. CNS Drugs. 2017;31:639–52.

  10. Liang W, Huang X, Chen W. The effects of Baicalin and Baicalein on cerebral ischemia: A review. Aging Dis. 2017;8:850–67.

  11. Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, et al. The fascinating effects of baicalein on cancer: A review. Int J Mol. Sci. 2016;17:1681.

  12. Donald G, Hertzer K, Eibl G. Baicalein - An Intriguing Therapeutic Phytochemical in Pancreatic Cancer. Curr Drug Targets. 2012;13:1772–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 2009;35:57–68.

  14. Chen H, Gao Y, Wu J, Chen Y, Chen B, Hu J, et al. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett. 2014;354:5–11.

  15. Zhang XP, Zhang L, He JX, Zhang RP, Cheng QH, Zhou YF, et al. Experimental study of therapeutic efficacy of Baicalin in rats with severe acute pancreatitis. World J Gastroenterol. 2007;13:717–24.

  16. Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem. 2017;131:68–80.

    CAS  PubMed  Article  Google Scholar 

  17. Liu J, Wei Y, Luo Q, Xu F, Zhao Z, Zhang H, et al. Baicalin attenuates inflammation in mice with OVA-induced asthma by inhibiting NF-kappaB and suppressing CCR7/CCL19/CCL21. Int J Mol Med Greece. 2016;38:1541–8.

    CAS  Article  Google Scholar 

  18. Kimura Y, Matsushita N, Yokoi-Hayashi K, Okuda H. Effects of baicalein isolated from Scutellaria baicalensis Radix on adhesion molecule expression induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. Planta Med. 2001;67:331–4.

    CAS  PubMed  Article  Google Scholar 

  19. Alsharairi NA. Scutellaria baicalensis and Their Natural Flavone Compounds as Potential Medicinal Drugs for the Treatment of Nicotine-Induced Non-Small-Cell Lung Cancer and Asthma. Int J Environ Res Public Health. 2021;18:5243.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Xiao J-R, Do C-W, To C-H. Potential Therapeutic Effects of Baicalein, Baicalin, and Wogonin in Ocular Disorders. J Ocul Pharmacol Ther. 2014;30:605–14.

    CAS  PubMed  Article  Google Scholar 

  21. Baradaran Rahimi V, Askari VR, Hosseinzadeh H. Promising influences of Scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: A review. Phytother Res. 2021;35:3558–74.

  22. Tang Y-J, Zhou F-W, Luo Z-Q, Li X-Z, Yan H-M, Wang M-J, et al. Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis. Inflammation. 2010;33:180–8.

    CAS  PubMed  Article  Google Scholar 

  23. Zhou R, Han X, Wang J, Sun J. Baicalin may have a therapeutic effect in attention deficit hyperactivity disorder. Med. Hypotheses. 2015;85:761–4.

  24. Fang P, Yu M, Zhang L, Wan D, Shi M, Zhu Y, et al. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol. 2017;448:77–86.

    CAS  PubMed  Article  Google Scholar 

  25. Fang P, Sun Y, Gu X, Shi M, Bo P, Zhang Z, et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. Phytomedicine. 2019;64: 153074.

    CAS  PubMed  Article  Google Scholar 

  26. Yu M, Han S, Wang M, Han L, Huang Y, Bo P, et al. Baicalin protects against insulin resistance and metabolic dysfunction through activation of GALR2/GLUT4 signaling. Phytomedicine. 2022;95: 153869.

    CAS  PubMed  Article  Google Scholar 

  27. Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, et al. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food Chem Toxicol. 2020;140: 111326.

    CAS  PubMed  Article  Google Scholar 

  28. Xue D, Zhang W, Zhang Y, Wang H, Zheng B, Shi X. Adjusting Effects of Baicalin for Nuclear Factor-κB and Tumor Necrosis Factor-α on Rats With Caerulein-Induced Acute Pancreatitis. Mediators Inflamm. 2006;2006:1–6.

    Article  CAS  Google Scholar 

  29. Sherwani MA, Yang K, Jani A, Abed RA, Taufique AK, Dosunmu TG, et al. Protective Effect of Baicalin Against TLR4-mediated UVA-induced Skin Inflammation. Photochem Photobiol. 2019;95:605–11.

    CAS  PubMed  Article  Google Scholar 

  30. Sui J, Feng Y, Li H, Cao R, Tian W, Jiang Z. Baicalin protects mouse testis from injury induced by heat stress. J Therm Biol. 2019;82:63–9.

    CAS  PubMed  Article  Google Scholar 

  31. Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H. Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iran J Pharm Res. 2017;16:2–23.

  32. Alavi MS, Fanoudi S, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. An updated review of protective effects of rosemary and its active constituents against natural and chemical toxicities. Phytother Res. 2021;35:1313–28.

    CAS  PubMed  Article  Google Scholar 

  33. Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother. 2018;99:411–21.

    CAS  PubMed  Article  Google Scholar 

  34. Fouad AEA, Fouad AA, Al-Melhim WN. Protective effect of baicalin in rats exposed to arsenic-induced testicular toxicity. Indian J Forensic Med Toxicol. 2018;12:256–61.

    Article  Google Scholar 

  35. Li XX, He GR, Mu X, Xu B, Tian S, Yu X, et al. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol. 2012;674:227–33.

  36. Liu W, Chen X, Liu J, Chen C, Ai J. The effect of baicalein on bleomycin-induced fibrosis in lungs of rats. Chinese J Appl Physiol China. 2009;25:145–9.

    CAS  Google Scholar 

  37. Ueng YF, Shyu CC, Liu TY, Oda Y, Lin YL, Liao JF, et al. Protective effects of baicalein and wogonin against benzo[a]pyrene- and aflatoxin B1-induced genotoxicities. Biochem Pharmacol. 2001;62:1653–60.

  38. De Boer JG, Quiney B, Walter PB, Thomas C, Hodgson K, Murch SJ, et al. Protection against aflatoxin-B 1 -induced liver mutagenesis by Scutellaria baicalensis. Mutat Res- Fundam Mol Mech Mutagen. 2005;578:15–22.

  39. Kim BR, Kim DH, Park R, Kwon KB, Ryu DG, Kim YC, et al. Effect of an extract of the root of Scutellaria baicalensis and its flavonoids on aflatoxin B1 oxidizing cytochrome P450 enzymes. Planta Med. 2001;67:396–9.

    CAS  PubMed  Article  Google Scholar 

  40. Qiu J, Niu X, Dong J, Wang D, Wang J, Li H, et al. Baicalin protects mice from staphylococcus aureus pneumonia via inhibition of the cytolytic activity of-hemolysin. J Infect Dis. 2012;206:292–301.

  41. Liu S, Liu B, Luo Z-Q, Qiu J, Zhou X, Li G, et al. The combination of osthole with baicalin protects mice from Staphylococcus aureus pneumonia. World J Microbiol Biotechnol. 2017;33:11.

    PubMed  Article  CAS  Google Scholar 

  42. Jia F, Ma W, Zhang X, Wang D, Zhou X. Matrine and baicalin inhibit apoptosis induced by Panton-Valentine leukocidin of Staphylococcus aureus in bovine mammary epithelial cells. J Dairy Sci. 2020;103:2731–42.

    CAS  PubMed  Article  Google Scholar 

  43. Dong J, Zhang Y, Chen Y, Niu X, Zhang Y, Yang C, et al. Baicalin inhibits the lethality of Shiga-like toxin 2 in mice. Antimicrob. Agents Chemother. 2015;59:7054–60.

  44. Zhang Y, Qi Z, Liu Y, He W, Yang C, Wang Q, et al. Baicalin Protects Mice from Lethal Infection by Enterohemorrhagic Escherichia coli. Front Microbiol. 2017;8:395.

  45. Vinh, Shinohara, Yamada, Duc, Nakayama, Ozawa, et al. Baicalein Inhibits Stx1 and 2 of EHE: Effects of Baicalein on the Cytotoxicity, Production, and Secretion of Shiga Toxins of Enterohaemorrhagic Escherichia coli. Toxins (Basel). 2019;11:505.

  46. Dong J, Zhang Y, Chen Y, Niu X, Zhang Y, Li R, et al. Baicalin inhibits the lethality of ricin in mice by inducing protein oligomerization. J Biol Chem. 2015;290:12899–907.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Wang K, Feng C, Li C, Yao J, Xie X, Gong L, et al. Baicalin protects mice from aristolochic acid I-Induced kidney injury by induction of CYP1A through the aromatic hydrocarbon receptor. Int J Mol Sci. 2015;16:16454–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Liu LL, Gong LK, Wang H, Xiao Y, Wu XF, Zhang YH, et al. Baicalin protects mouse from Concanavalin A-induced liver injury through inhibition of cytokine production and hepatocyte apoptosis. Liver Int. 2007;27:582–91.

  49. Zhang Y, Shan L, Hua Y, Wang D, Zeng H, Liu R, et al. Baicalein Selectively Induces Apoptosis in Activated Lymphocytes and Ameliorates Concanavalin A-Induced Hepatitis in Mice. PLoS One. 2013;8:e69592.

  50. Im AR, Kim YH, Uddin MR, Lee HW, Chae SW, Kim YH, et al. Scutellaria baicalensis extracts and flavonoids protect rat l6 cells from antimycin a-induced mitochondrial dysfunction. Evidence-based Complement Altern Med. 2012;2012:517965.

  51. Huan SK-H, Wang K-T, Yeh S-D, Lee C-J, Lin L-C, Liu D-Z, et al. Scutellaria baicalensis Alleviates Cantharidin-Induced Rat Hemorrhagic Cystitis through Inhibition of Cyclooxygenase-2 Overexpression. Molecules. 2012;17:6277–89.

  52. Zhang SF, Dong YC, Zhang XF, Wu XG, Cheng JJ, Guan LH, et al. Flavonoids from Scutellaria attenuate okadaic acid-induced neuronal damage in rats. Brain Inj. 2015;29:1376–82.

    PubMed  Article  Google Scholar 

  53. Li D, Shi G, Wang J, Zhang D, Pan Y, Dou H, et al. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Res Ther. 2019;21:1–14.

    Article  Google Scholar 

  54. Zhang J, Sheng Y, Shi L, Zheng Z, Chen M, Lu B, et al. Quercetin and baicalein suppress monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats. Eur J Pharmacol Netherlands. 2017;795:160–8.

    CAS  Article  Google Scholar 

  55. Schultze AE, Roth RA. Chronic pulmonary hypertension-the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Heal Part B. 1998;1:271–346.

    CAS  Article  Google Scholar 

  56. Hsu WL, Lin YC, Jeng JR, Chang HY, Chou TC. Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ET AR in Pneumonectomized Rats. Am J Chin Med. 2018;46:769–83.

    CAS  PubMed  Article  Google Scholar 

  57. Shi R, Zhu D, Wei Z, Fu N, Wang C, Liu L, et al. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition. Life Sci. 2018;207:442–50.

    CAS  PubMed  Article  Google Scholar 

  58. Shi R, Wei Z, Zhu D, Fu N, Wang C, Yin S, et al. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulm Pharmacol Ther England. 2018;48:124–35.

    CAS  Article  Google Scholar 

  59. Zhang Z, Zhang L, Sun C, Kong F, Wang J, Xin Q, et al. Baicalin attenuates monocrotaline-induced pulmonary hypertension through bone morphogenetic protein signaling pathway. Oncotarget. 2017;8:63430–41.

  60. Yan G, Wang J, Yi T, Cheng J, Guo H, He Y, et al. Baicalin prevents pulmonary arterial remodeling in vivo via the AKT/ERK/NF-kappaB signaling pathways. Pulm Circ. United States; 2019;9:2045894019878599.

  61. Luan Y, Chao S, Ju ZY, Wang J, Xue X, Qi TG, et al. Therapeutic effects of baicalin on monocrotaline-induced pulmonary arterial hypertension by inhibiting inflammatory response. Int. Immunopharmacol. 2015;26:188–93.

  62. Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for pulmonary ricin intoxication: Current aspects and future prospects. Toxins (Basel). 2017;9:311.

  63. Liu J, Zhu X, Kim SJ, Zhang W. Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities. Nat Prod Rep. 2016;33:1146–65.

    CAS  PubMed  Article  Google Scholar 

  64. Xiao GL, Zhang CH, Liu GD, Liu FY, Liu ZY, Hu SY, et al. Clinical study of the effects of baicalin on arrhythmia induced by aconitine poisoning. J Med Plants Res. 2011;5:88–92.

    CAS  Google Scholar 

  65. Xue X, Zhang S, Jiang W, Wang J, Xin Q, Sun C, et al. Protective effect of baicalin against pulmonary arterial hypertension vascular remodeling through regulation of TNF-α signaling pathway. Pharmacol Res Perspect. 2021;9: e00703.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsai C, Lin Y, Wang H, Chou T. Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J Ethnopharmacol. 2014;153:197–206.

    CAS  PubMed  Article  Google Scholar 

  67. Deng J, Wang DX, Liang AL, Tang J, Xiang DK. Effects of baicalin on alveolar fluid clearance and α-ENaC expression in rats with LPS-induced acute lung injury. Can J Physiol Pharmacol. 2017;95:122–8.

    CAS  PubMed  Article  Google Scholar 

  68. Long Y, Xiang Y, Liu S, Zhang Y, Wan J, Yang Q, et al. Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF-κB Pathway. Mediators Inflamm. 2020;2020:8414062.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Chen H, Zhang Y, Zhang W, Liu H, Sun C, Zhang B, et al. Inhibition of myeloid differentiation factor 2 by baicalein protects against acute lung injury. Phytomedicine. 2019;63:152997.

  70. Ding XM, Pan L, Wang Y, Xu QZ. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-B pathway in CX3CL1-knockout mice. Int J Mol Med. 2016;37:703–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Meng X, Hu L, Li W. Baicalin ameliorates lipopolysaccharide-induced acute lung injury in mice by suppressing oxidative stress and inflammation via the activation of the Nrf2-mediated HO-1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2019;392:1421–33.

    CAS  PubMed  Article  Google Scholar 

  72. Huang KL, Chen CS, Hsu CW, Li MH, Chang H, Tsai SH, et al. Therapeutice effects of baicalin on lipopolysaccharide-induced acute lung injury in rats. Am J Chin Med. 2008;36:301–11.

    CAS  PubMed  Article  Google Scholar 

  73. Dong S, Zhong Y, Lu W, Li G, Jiang H, Mao B. Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-kappaB Pathway in HBE16 Airway Epithelial Cells. Inflammation. 2015;38:1493–501.

    CAS  PubMed  Article  Google Scholar 

  74. Feng T, Zhou L, Gai S, Zhai Y, Gou N, Wang X, et al. Acacia catechu (L.f.) Willd and Scutellaria baicalensis Georgi extracts suppress LPS‐induced pro‐inflammatory responses through NF‐кB, MAPK, and PI3K‐Akt signaling pathways in alveolar epithelial type II cells. Phytother Res. 2019;33:3251–60.

  75. Chen JJ, Huang CC, Chang HY, Li PY, Liang YC, Deng JS, et al. Scutellaria baicalensis Ameliorates Acute Lung Injury by Suppressing Inflammation in Vitro and in Vivo. Am J Chin Med. 2017;45:137–57.

    PubMed  Article  Google Scholar 

  76. Chen HM, Liou SF, Hsu JH, Chen TJ, Cheng TL, Chiu CC, et al. Baicalein inhibits HMGB1 release and MMP-2/-9 expression in lipopolysaccharide-induced cardiac hypertrophy. Am J Chin Med. 2014;42:785–97.

    CAS  PubMed  Article  Google Scholar 

  77. Li MF, Hu XY, Chen LW, Lian J, Zhao GJ, Hong GL, et al. Baicalin regulates STIM1-mediated calcium overload and reduces apoptosis of cardiomyocytes induced by lipopolysaccharide. Chin Med J (Engl). China; 2019;99:3176–82.

  78. Liu X, Wang S, Zhao G. Baicalin relieves lipopolysaccharide-evoked inflammatory injury through regulation of miR-21 in H9c2 cells. Phytother Res. 2020;34:1134–41.

  79. Wan JY, Gong X, Zhang L, Li HZ, Zhou YF, Zhou QX. Protective effect of baicalin against Lipopolysaccharide/d-galactosamine-induced liver injury in mice by up-regulation of Heme oxygenase-1. Eur J Pharmacol. 2008;587:302–8.

    CAS  PubMed  Article  Google Scholar 

  80. Liu A, Wang W, Fang H, Yang Y, Jiang X, Liu S, et al. Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. Eur J Pharmacol. 2015;748:45–53.

    CAS  PubMed  Article  Google Scholar 

  81. Wang C, Nie H, Li K, Zhang Y-X, Shu K-G, Chen X-J. Protective effect of baicalin solid dispersion on D-galactosamine induced acute hepatic injury in mice. Chinese J Integr Tradit West Med. 2014;34:71–4.

    Google Scholar 

  82. Cheng P, Wang T, Li W, Muhammad I, Wang H, Sun X, et al. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front Pharmacol. 2017;8:1–12.

    Google Scholar 

  83. Huang Y, Sun M, Yang X, Ma A, Ma Y, Zhao A. Baicalin relieves inflammation stimulated by lipopolysaccharide via upregulating TUG1 in liver cells. J Physiol Biochem. 2019;75:463–73.

  84. Wu Y, Lian L, Wan Y, Nan J. Chemico-Biological Interactions Baicalein inhibits nuclear factor- ␬ B and apoptosis via c-FLIP and MAPK in d -GalN / LPS induced acute liver failure in murine models. Chem Biol Interact. 2010;188:526–34.

    CAS  PubMed  Article  Google Scholar 

  85. Thanh HN, Minh HPT, Le TA, Ly HDT, Huu TN, Duc LV, et al. Ethanol extracts of Scutellaria baicalensis protect against lipopolysaccharideinduced acute liver injury in mice. Asian Pac J Trop Biomed. 2015;5:761–7.

    Article  CAS  Google Scholar 

  86. Liao S, Li P, Wang J, Zhang Q, Xu D, Yang M, et al. Protection of baicalin against lipopolysaccharide induced liver and kidney injuries based on 1H NMR metabolomic profiling. Toxicol Res (Camb). 2016;5:1148–59.

    CAS  Article  Google Scholar 

  87. Sun Y, Liu MW, Zhao YH, Lu YX, Wang YA, Tong CW. Baicalin attenuates lipopolysaccharide-induced renal tubular epithelial cell injury by inhibiting the TXNIP/NLRP3 signalling pathway via increasing miR-223–3p expression. J Biol Regul Homeost Agents. 34:69–82.

  88. Yeh J-H, Chiu H-F, Wang J-S, Lee J-K, Chou T-C. Protective Effect of Baicalein Extracted from Scutellaria baicalensis against Lipopolysaccharide-Induced Glomerulonephritis in Mice. Int J Pharmacol. 2010;6:81–8.

    CAS  Article  Google Scholar 

  89. Hwang YK, Jinhua M, Choi BR, Cui CA, Jeon WK, Kim H, et al. Effects of Scutellaria baicalensis on chronic cerebral hypoperfusion- induced memory impairments and chronic lipopolysaccharide infusion-induced memory impairments. J Ethnopharmacol. 2011;137:681–9.

    PubMed  Article  Google Scholar 

  90. Shah M-A, Park D-J, Kang J-B, Kim M-O, Koh P-O. Baicalin attenuates lipopolysaccharide-induced neuroinflammation in cerebral cortex of mice via inhibiting nuclear factor kappa B (NF-κB) activation. J Vet Med Sci. 2019;81:1359–67.

  91. Shah M-A, Park D-J, Kang J-B, Kim M-O, Koh P-O. Baicalin alleviates lipopolysaccharide-induced neuroglial activation and inflammatory factors activation in hippocampus of adult mice. Lab Anim Res. 2020;36:32.

    PubMed  PubMed Central  Article  Google Scholar 

  92. Wang G, Wu J, Wang J. Effects of baicalin from traditional Chinese medicine against lipopolysaccharide-induced inflammation in BV2 cells in vitro. Lat Am J Pharm. 2019;38:204–8.

    CAS  Google Scholar 

  93. Yan J-J, Du G-H, Qin X-M, Gao L. Baicalein attenuates the neuroinflammation in LPS-activated BV-2 microglial cells through suppression of pro-inflammatory cytokines, COX2/NF-kappaB expressions and regulation of metabolic abnormality. Int Immunopharmacol. Netherlands; 2020;79:106092.

  94. Li F-Q, Wang T, Pei Z, Liu B, Hong J-S. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J Neural Transm Austria. 2005;112:331–47.

    CAS  Article  Google Scholar 

  95. Chen C-J, Raung S-L, Liao S-L, Chen S-Y. Inhibition of inducible nitric oxide synthase expression by baicalein in endotoxin/cytokine-stimulated microglia. Biochem Pharmacol. 2004;67:957–65.

    CAS  PubMed  Article  Google Scholar 

  96. Tsai CC, Lin MT, Wang JJ, Liao JF, Huang WT. The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits. Neuropharmacology. 2006;51:709–17.

    CAS  PubMed  Article  Google Scholar 

  97. Ye L, Tao Y, Wang Y, Feng T, Li H. The effects of baicalin on the TLR2/4 signaling pathway in the peripheral blood mononuclear cells of a lipopolysaccharide-induced rat fever model. Int Immunopharmacol. 2015;25:106–11.

    CAS  PubMed  Article  Google Scholar 

  98. Luo W, Wang CY, Jin L. Baicalin Downregulates Porphyromonas gingivalis Lipopolysaccharide-Upregulated IL-6 and IL-8 Expression in Human Oral Keratinocytes by Negative Regulation of TLR Signaling. PLoS ONE. 2012;7:1–9.

    Article  Google Scholar 

  99. Wang J, Luo H, Yang L, Li Y. Baicalein induces apoptosis and reduces inflammation in LPS-stimulated keratinocytes by blocking the activation of NF-κB: implications for alleviating oral lichen planus. Cell Mol Biol (Noisy-le-grand). 2016;62:55–60.

  100. Wu Q, Ye H, Zhu Y-Z, Guo M, He X-X, Zheng X-B. Protective effect of baicalin against LPS-induced intestinal injury. China J Chinese Mater medica. 2013;38:2854–8.

    CAS  Google Scholar 

  101. Chen J, Zhang R, Wang J, Yu P, Liu Q, Zeng D, et al. Protective effects of baicalin on LPS-induced injury in intestinal epithelial cells and intercellular tight junctions. Can J Physiol Pharmacol. 2015;93:233–7.

    CAS  PubMed  Article  Google Scholar 

  102. Chen YC, Shen SC, Chen LG, Lee TJF, Yang LL. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol. 2001;61:1417–27.

    CAS  PubMed  Article  Google Scholar 

  103. Cheng PY, Lee YM, Wu YS, Chang TW, Jin JS, Yen MH. Protective effect of baicalein against endotoxic shock in rats in vivo and in vitro. Biochem Pharmacol. 2007;73:793–804.

    CAS  PubMed  Article  Google Scholar 

  104. Lee YM, Cheng PY, Chim LS, Kung CW, Ka SM, Chung MT, et al. Baicalein, an active component of Scutellaria baicalensis Georgi, improves cardiac contractile function in endotoxaemic rats via induction of heme oxygenase-1 and suppression of inflammatory responses. J Ethnopharmacol. 2011;135:179–85.

    CAS  PubMed  Article  Google Scholar 

  105. Liu LL, Gong LK, Wang H, Xiao Y, Wu XF, Zhang YH, et al. Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock. Biochem Pharmacol. 2008;75:914–22.

    CAS  PubMed  Article  Google Scholar 

  106. He X, Wei Z, Zhou E, Chen L, Kou J, Wang J, et al. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol. 2015;28:470–6.

    CAS  PubMed  Article  Google Scholar 

  107. Yang W, Li H, Cong X, Wang X, Jiang Z, Zhang Q, et al. Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating NF-κB and HSP72. Int Immunopharmacol. 2016;40:139–45.

    CAS  PubMed  Article  Google Scholar 

  108. Wang X, Zhao Y, Zhong X. Protective effects of Baicalin on decidua cells of LPS-induced mice abortion. J Immunol Res. 2014;2014:1–7.

    Google Scholar 

  109. Ma J, Wang R, Yan H, Xu R, Xu A, Zhang J. Protective Effects of Baicalin on Lipopolysaccharide-Induced Injury in Caenorhabditis elegans. Pharmacology Switzerland. 2020;105:109–17.

    CAS  Google Scholar 

  110. Zhao Y, Bao Y, Shi W, Wang X, Zhong X. Protective effects of baicalin on lipopolysaccharide (LPS)-induced implantation failure and the uterine endometrium in mice. African J Pharm Pharmacol. 2011;5:1661–8.

    CAS  Article  Google Scholar 

  111. Min W, Lin XF, Miao X, Wang BT, Yang ZL, Luo D. Inhibitory effects of Baicalin on ultraviolet B-induced photo-damage in keratinocyte cell line. Am J Chin Med. 2008;36:745–60.

    CAS  PubMed  Article  Google Scholar 

  112. Zhou B-R, Luo D, Wei F-D, Chen X-E, Gao J. Baicalin protects human fibroblasts against ultraviolet B-induced cyclobutane pyrimidine dimers formation. Arch Dermatol Res. 2008;300:331–4.

    CAS  PubMed  Article  Google Scholar 

  113. Zhang JA, Yin Z, Ma LW, Yin ZQ, Hu YY, Xu Y, et al. The protective effect of baicalin against UVB irradiation induced photoaging: An in vitro and in vivo study. PLoS One. 2014;9:e99703.

  114. Chang W-S, Lin E-Y, Hsu S-W, Hu P-S, Chuang C-L, Liao C-H, et al. Baicalin Scavenged Reactive Oxygen Species and Protected Human Keratinocytes Against UVB-induced Cytotoxicity. In Vivo (Brooklyn). 2016;30:605–10.

    CAS  Google Scholar 

  115. Zhang JA, Luan C, Huang D, Ju M, Chen K, Gu H. Induction of autophagy by baicalin through the AMPK-mTOR pathway protects human skin fibroblasts from ultraviolet B radiation-induced apoptosis. Drug Des Devel Ther. 2020;14:417–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Min W, Liu X, Qian Q, Lin B, Wu D, Wang M, et al. The effects of baicalin against UVA-induced photoaging in skin fibroblasts. Am J Chin Med. 2014;42:709–27.

    CAS  PubMed  Article  Google Scholar 

  117. Zhou BR, Yin H Bin, Xu Y, Wu D, Zhang ZH, Zhi-Qiang Yin, et al. Baicalin protects human skin fi broblasts from ultraviolet A radiation-induced oxidative damage and apoptosis. Free Radic Res. 2012;46:1458–71.

  118. Wang S-C, Chen S-F, Lee Y-M, Chuang C-L, Bau D-T, Lin S-S. Baicalin scavenges reactive oxygen species and protects human keratinocytes against UVC-induced cytotoxicity. In Vivo (Brooklyn). 2013;27:707–14.

    CAS  Google Scholar 

  119. Manca ML, Mir-Palomo S, Caddeo C, Nacher A, Díez-Sales O, Peris JE, et al. Sorbitol-penetration enhancer containing vesicles loaded with baicalin for the protection and regeneration of skin injured by oxidative stress and UV radiation. Int J Pharm. 2019;555:175–83.

    CAS  PubMed  Article  Google Scholar 

  120. Bing-Rong Z, Song-Liang J, Xiao-E C, Xiang-Fei L, Bao-Xiang C, Jie G, et al. Protective effect of the Baicalin against DNA damage induced by ultraviolet B irradiation to mouse epidermis. Photodermatol Photoimmunol Photomed. 2008;24:175–82.

    PubMed  Article  Google Scholar 

  121. Zhou BR, Liu WL, Luo D. Protective effect of baicalin against multiple ultraviolet b exposure-mediated injuries in C57BL/6 mouse skin. Arch Pharm Res. 2011;34:261–8.

    CAS  PubMed  Article  Google Scholar 

  122. Oh MC, Piao MJ, Fernando PMDJ, Han X, Hewage SRKM, Park JE, et al. Baicalein protects human skin cells against ultraviolet B-induced oxidative stress. Biomol Ther. 2016;24:616–22.

    CAS  Article  Google Scholar 

  123. Lu J, Zhong Y, Lin Z, Lin X, Chen Z, Wu X, et al. Baicalin alleviates radiation-induced epithelial-mesenchymal transition of primary type II alveolar epithelial cells via TGF-β and ERK/GSK3β signaling pathways. Biomed Pharmacother. 2017;95:1219–24.

    CAS  PubMed  Article  Google Scholar 

  124. Yang SJ, Jo H, Kim JG, Jung SH. Baicalin attenuates laser-induced choroidal neovascularization. Curr Eye Res. 2014;39:745–51.

    CAS  PubMed  Article  Google Scholar 

  125. Jang H, Lee J, Park S, Kim JS, Shim S, Lee S, et al. Baicalein mitigates radiation-induced enteritis by improving endothelial dysfunction. Front Pharmacol. 2019;10:1–13.

    CAS  Article  Google Scholar 

  126. Lee EK, Kim JM, Choi J, Jung KJ, Kim DH, Chung SW, et al. Modulation of NF-κB and FOXOs by baicalein attenuates the radiation-induced inflammatory process in mouse kidney. Free Radic Res. 2011;45:507–17.

    CAS  PubMed  Article  Google Scholar 

  127. Wang M, Dong Y, Wu J, Li H, Zhang Y, Fan S, et al. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sci. Netherlands; 2020;261:118463.

  128. Gandhi NM. Baicalein protects mice against radiation-induced DNA damages and genotoxicity. Mol Cell Biochem. 2013;379:277–81.

    CAS  PubMed  Article  Google Scholar 

  129. Guo X, Chi S, Cong X, Li H, Jiang Z, Cao R, et al. Baicalin protects sertoli cells from heat stress-induced apoptosis via activation of the Fas/FasL pathway and Hsp72 expression. Reprod Toxicol. 2015;57:196–203.

    CAS  PubMed  Article  Google Scholar 

  130. Kang TH, Hong BN, Park C, Kim SY, Park R. Effect of baicalein from Scutellaria baicalensis on prevention of noise-induced hearing loss. Neurosci Lett. 2010;469:298–302.

    CAS  PubMed  Article  Google Scholar 

  131. Rodriguez I, Hong BN, Nam YH, Kim EY, Park GH, Ji MG, et al. Bioconversion of Scutellaria baicalensis extract can increase recovery of auditory function in a mouse model of noise-induced hearing loss. Biomed Pharmacother. 2017;93:1303–9.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hossein Hosseinzadeh; Literature research and data analysis: Ali Ahmadi, Zoha Mortazavi; Writing (original draft preparation and graphic design): Ali Ahamdi; Writing (review and editing): Hossein Hosseinzadeh, Soghra Mehri, Ali Ahamdi.

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Mortazavi, Z., Mehri, S. et al. Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms. DARU J Pharm Sci (2022). https://doi.org/10.1007/s40199-022-00443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40199-022-00443-x

Keywords

  • Scutellaria baicalensis
  • Baicalin
  • Baicalein
  • Antidote
  • Natural toxin
  • Physical hazards