Skip to main content
Log in

Assessment of the predictive capability of modelling and simulation to determine bioequivalence of inhaled drugs: A systematic review

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objectives

There are a multitude of different modelling techniques that have been used for inhaled drugs. The main objective of this review was to conduct an exhaustive survey of published mathematical models in the area of asthma and chronic obstructive pulmonary disease (COPD) for inhalation drugs. Additionally, this review will attempt to assess the applicability of these models to assess bioequivalence (BE) of orally inhaled products (OIPs).

Evidence acquisition

PubMed, Science Direct, Web of Science, and Scopus databases were searched from 1996 to 2020, to find studies that described mathematical models used for inhaled drugs in asthma/COPD.

Results

50 articles were finally included in this systematic review. This research identified 22 articles on in silico aerosol deposition models, 20 articles related to population pharmacokinetics and 8 articles on physiologically based pharmacokinetic modelling (PBPK) modelling for inhaled drugs in asthma/COPD. Among all the aerosol deposition models, computational fluid dynamics (CFD) simulations are more likely to predict regional aerosol deposition pattern in human respiratory tracts. Across the population PK articles, body weight, gender, age and smoking status were the most common covariates that were found to be significant. Further, limited published PBPK models reported approximately 29 parameters relevant for absorption and distribution of inhaled drugs. The strengths and weaknesses of each modelling technique has also been reviewed.

Conclusion

Overall, while there are different modelling techniques that have been used for inhaled drugs in asthma and COPD, there is very limited application of these models for assessment of bioequivalence of OIPs. This review also provides a ready reference of various parameters that have been considered in various models which will aid in evaluation if one model or hybrid in silico models need to be considered when assessing bioequivalence of OIPs.

Graphical abstract  

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ACI:

Andersen Cascade Impactor

BE:

Bioequivalence

CFD:

Computational fluid dyanamics

COPD:

Chronic Obstructive Pulmonary Disease

IVIVC/E:

In vitro in vivo Correlation/extrapolation

IP:

Induction port

NGI:

New generation impactor

OFV:

Objective function value

PBPK:

Physiologically based pharmacokinetics

PD:

Pharmacodynamics

PK:

Pharmacokinetics

VPC:

Visual predictive checks

References

  1. Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Dev (Camb). 2014;141(3):502–13.

    Article  CAS  Google Scholar 

  2. Itoh H, Nishino M, Hatabu H. Architecture of the lung: morphology and function. J Thorac Imaging. 2004;19(4):221–7.

    Article  PubMed  Google Scholar 

  3. Longest PW. CFD and hybrid deposition modeling when and why the approach is useful. Respir Drug Deliv. 2018;1:123–36.

  4. Delvadia R, Hindle M, Worth Longest P, Byron PR. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J Aerosol Med Pulm Drug Deliv. 2013;26(3):138–44.

    Article  CAS  PubMed  Google Scholar 

  5. Wei X, Hindle M, Kaviratna A, Huynh BK, Delvadia RR, Sandell D, et al. In vitro tests for aerosol deposition. VI: Realistic testing with different mouth-throat models and in vitro - In vivo correlations for a dry powder inhaler, metered dose inhaler, and soft mist inhaler. J Aerosol Med Pulm Drug Deliv. 2018;31:1–14.

    Article  CAS  Google Scholar 

  6. Longest PWHM. Small airway absorption and microdosimetry of inhaled corticosteriod particles after deposition. Pharm Res. 2017;34(10):2049–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renishkumar R, Delvadia P. Worth longest and PRB. In vitro tests for aerosol deposition. I: scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J Aerosol Med Pulm Drug Deliv. 2012;25(1):32–40.

    Article  CAS  Google Scholar 

  8. Burnell PKP, Asking L, Borgström L, Nichols SC, Olsson B, Prime D, Shrubb I. Studies of the human oropharyngeal airspaces using magnetic resonance imaging IV–the oropharyngeal retention effect for four inhalation delivery systems. J Aerosol Med. 2007;20(3):269–81.

    Article  CAS  PubMed  Google Scholar 

  9. Stapleton KW, Guentsch E, Hoskinson MKFW. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat. J Aerosol Sci. 2000;31(6):739–49.

    Article  CAS  Google Scholar 

  10. Ruzycki CA, Martin AR, Finlay WH. An exploration of factors affecting in vitro deposition of pharmaceutical aerosols in the Alberta idealized throat. J Aerosol Med Pulm Drug Deliv. 2019;32(6):405–17.

    Article  CAS  PubMed  Google Scholar 

  11. Dissanayake S. Therapeutic equivalence for orally inhaled products in Europe: an update and counterpoint to the 505(j) approval process. Respir Drug Deliv. 2018;505:237–54.

    Google Scholar 

  12. Hocchaus G, Horhota S, Hendeles L, Suarez SRJ. Pharmacokinetics of orally inhaled drug products. AAPS J. 2015;17:769–75.

    Article  CAS  Google Scholar 

  13. Jones HM, Parrott N, Jorga K, Lavé T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.

    Article  CAS  PubMed  Google Scholar 

  14. Luttringer O, Theil F-P, Poulin P, Schmitt-Hoffmann AH, Guentert TW, Lavé T. Physiologically based pharmacokinetic (PBPK) modeling of disposition of epiroprim in humans. J Pharm Sci Res. 2003;92(10):1990–2007.

    CAS  Google Scholar 

  15. Longest PW, Holbrook LT. In silico models of aerosol delivery to the respiratory tract - development and applications. Adv Drug Deliv Rev. 2012;64(4):296–311.

    Article  CAS  PubMed  Google Scholar 

  16. Stahlhofen W, Rudolf GJA. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med. 1989;2:285–308.

    Article  Google Scholar 

  17. Finlay WHMA. Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv. 2008;21:189–205.

    Article  PubMed  Google Scholar 

  18. Choi JKC. Mathematical analysis of particle deposition in human lungs: An improved single path transport model. Inhal Toxicol. 2007;19:925–39.

    Article  CAS  PubMed  Google Scholar 

  19. Asgharian B, Hofmann W, Bergmann R. Particle deposition in a multiple-path model of the human lung. Aerosol science and technology. Inhal Toxicol. 2001;34:332–9.

    CAS  Google Scholar 

  20. Katz I, Pichelin M, Caillibotte G, Montesantos S, Majoral C, Martonen T, Fleming J, Bennett MCJ. Controlled, parametric, individualized, 2D, and 3D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects: preliminary comparisons with simulations. Aerosol Sci Technol. 2013;47:714–23.

    Article  CAS  Google Scholar 

  21. Conway J, Fleming J, Majoral C, Katz I, Perchet D, Peebles C, Tossici-Bolt L, Collier L, Caillibotte G, Pichelin M, Sauret-Jackson V, Martonen T, Apiou-Sbirlea G, Muellinger B, Kroneberg P, Gleske J, Scheuch G, Texereau J, Martin A, Montesantos SBM. Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation. J Aerosol Sci. 2012;52:1–17.

    Article  CAS  Google Scholar 

  22. Fleming JS, Epps BP, Conway JHMT. Comparison of SPECT aerosol deposition data with a human respiratory tract model. J Aerosol Med. 2006;19:268–78.

    Article  PubMed  Google Scholar 

  23. Koblinger L, Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure. J Aerosol Sci. 1990;21:661–74.

    Article  Google Scholar 

  24. Kim CS. Deposition of aerosol particles in human lungs: in vivo measurement and modeling. Biomarkers. 2009;14:54–8.

    Article  CAS  PubMed  Google Scholar 

  25. Martonen TB. Analytical model of hygroscopic particle behavior in human airways. Bull Math Biol. 1982;44(3):425–42.

    Article  CAS  PubMed  Google Scholar 

  26. Xi J, Longest PWMT. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol. 2008;104(6):1761–77.

    Article  PubMed  Google Scholar 

  27. Longest PW, Vinchurkar SMT. Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci. 2006;37:1234–57.

    Article  CAS  Google Scholar 

  28. Sznitman J, Heimshch T, Wildhaber JH, et al. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng. 2009;131:1–15.

    Article  Google Scholar 

  29. Lambert AR, O’Shaughnessy PT, Tawhai MH, et al. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol science and technology. Aerosol Sci Technol. 2011;45:11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inthavong K, Choi L-T, Tu J, et al. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys. 2010;32:1198–212.

    Article  PubMed  Google Scholar 

  31. Choi J, Tawhai M, Hoffman EA, et al. On intra- and intersubject variabilities of airflow in the human lungs. Phys Fluids. 2009;21:1017.

    Article  CAS  Google Scholar 

  32. Li Z, Kleinstreuer CZZP. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. Aerosol Science. 2007;38:625–44.

    Article  CAS  Google Scholar 

  33. Lin C-L, Tawhai MH, McLennan G, et al. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 2007;157:295–309.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tian G, Longest PW, Li XHM. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. J Aerosol Med Pulm Drug Deliv. 2013;26:248–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian G, Longest PW, Su GHM. Characterization of respiratory drug delivery with enhanced condensational growth (ECG) using an individual path model of the entire tracheobronchial airways. Ann Biomed Eng. 2011;39:1136–53.

    Article  PubMed  Google Scholar 

  36. Tian G, Longest PW, Su G, Walenga RLHM. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: Effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–99.

    Article  CAS  Google Scholar 

  37. Sosnowski TR. Powder particles and technologies for medicine delivery to the respiratory system: challenges and opportunities. KONA Powder Part J. 2018;2018(35):122–38.

    Article  CAS  Google Scholar 

  38. Longest PW, Hindle M, Das Choudhuri SXJ. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J Aerosol Sci. 2008;39:572–91.

    Article  CAS  Google Scholar 

  39. Balashazy IHW. Particle deposition in airway bifurcations-II. Expiratory flow. J Aerosol Sci. 1993; 24:773–86.

    Article  CAS  Google Scholar 

  40. Longest PWHM. Evaluation of the Respimat Soft Mist inhaler using a concurrent CFD and in vitro approach. J Aerosol Med Pulm Drug Deliv. 2009;22:99–112.

    Article  Google Scholar 

  41. Longest PW, Tian G, Delvadia RHM. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci Technol. 2012;46:1271–85.

    Article  CAS  Google Scholar 

  42. Oldham MJ, Phalen RFHT. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci Technol. 2000;62:61–71.

    Article  Google Scholar 

  43. Sznitman J, Sutter R, Altorfer D, Stampanonim M, Rosgen TSJ. Visualization of respiratory flows from 3D reconstructed alveolar airsapces using X-ray tomographic microscopy. J Vis. 2010;13:337–45.

    Article  Google Scholar 

  44. Pw L. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Transf. 2008;51:5562–77.

    Article  Google Scholar 

  45. Golshahi L, Noga MLFW. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J Aerosol Sci. 2012;49:21–31.

    Article  CAS  Google Scholar 

  46. Finlay W, Stapleton KYJ. On the use of computational fluid dynamics for simulating flow and particle deposition in the human respiratory tract. J Aerosol Med. 1996;9:329–41.

    Article  Google Scholar 

  47. Kimbell JS, Gross EA, Joyner DR, et al. Application of computational fluid dynamics regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol Appl Pharmacol. 1993;121:253–63.

    Article  CAS  PubMed  Google Scholar 

  48. Martonen TBGXF. Effects of tumors on inhaled pharmacologic drugs II. Particle motion. Cell Biochem Biophys. 2001;35:245–53.

    Article  CAS  PubMed  Google Scholar 

  49. Comer JK, Kleinstreuer C, Hyun S, et al. Aerosol transport and deposition in sequentially bifurcating airways. J Biomech Eng. 2000;4(122):152–8.

    Article  Google Scholar 

  50. Ruzycki CA, Javaheri E, Finlay WH. The use of computational fluid dynamics in inhaler design. Expert Opin Drug Deliv. 2013;10:307–23.

    Article  CAS  PubMed  Google Scholar 

  51. Sheiner LB, Rosenberg BMV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5:445–79.

    Article  CAS  PubMed  Google Scholar 

  52. Sheiner LB, Rosenberg BMK. Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res. 1972;5:411–59.

    Article  CAS  PubMed  Google Scholar 

  53. Maier G, Rubino C, Hsu R, Grasela T, Baumgartner RA. Population pharmacokinetics of (R)-albuterol and (S)-albuterol in pediatric patients aged 4–11 years with asthma. Pulm Pharmacol Ther. 2007;20(5):534–42.

    Article  CAS  PubMed  Google Scholar 

  54. Minto C, Li B, Tattam B, Brown K, Seale JP, Donnelly R. Pharmacokinetics of epimeric budesonide and fluticasone propionate after repeat dose inhalation - intersubject variability in systemic absorption from the lung. Br J Clin Pharmacol. 2000;50:116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lönnebo A, Grahnén A, Karlsson MO. An integrated model for the effect of budesonide on ACTH and cortisol in healthy volunteers. Br J Clin Pharmacol. 2007;64(2):125–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wu K, Goyal N, Stark JG, Hochhaus G. Evaluation of the administration time effect on the cumulative cortisol suppression and cumulative lymphocytes suppression for once-daily inhaled corticosteroids: A population modeling/simulation approach. J Clin Pharmacol. 2008;48(9):1069–80.

    Article  CAS  PubMed  Google Scholar 

  57. Soulele K, Macheras P, Karalis V. On the pharmacokinetics of two inhaled budesonide/formoterol combinations in asthma patients using modeling approaches. Pulm Pharmacol Ther. 2018;48:168–78.

    Article  CAS  PubMed  Google Scholar 

  58. Rohatagi S, Arya V, Zech K, Nave R, Hochhaus G, Jensen BK, et al. Population pharmacokinetics and pharmacodynamics of ciclesonide. J Clin Pharmacol. 2003;43(4):365–78.

    Article  CAS  PubMed  Google Scholar 

  59. Rohatagi S, Krishnaswami S, Pfister M, Sahasranaman S. Model-based covariate pharmacokinetic analysis and lack of cortisol suppression by the new inhaled corticosteroid ciclesonide using a novel cortisol release model. Am J Ther. 2005;12(5):385–97.

    Article  PubMed  Google Scholar 

  60. Xu J, Nave R, Lahu G, Derom E, Derendorf H. Population pharmacokinetics and pharmacodynamics of inhaled ciclesonide and fluticasone propionate in patients with persistent asthma. J Clin Pharmacol. 2010;50(10):1118–27.

    Article  CAS  PubMed  Google Scholar 

  61. Krishnaswami S, Hochhaus G, Möllmann H, Barth J, Derendorf H. Interpretation of absorption rate data for inhaled fluticasone propionate obtained in compartmental pharmacokinetic modeling. Int J Clin Pharmacol Ther. 2005;43(3):117–22.

    Article  CAS  PubMed  Google Scholar 

  62. Siederer S, Allen A, Yang S. Population Pharmacokinetics of Inhaled Fluticasone Furoate and Vilanterol in Subjects with Chronic Obstructive Pulmonary Disease. Eur J Drug Metab Pharmacokinet. 2016;41(6):743–58.

    Article  CAS  PubMed  Google Scholar 

  63. Soulele K, Macheras P, Silvestro L, Savu SR, Karalis V, Rizea Savu S, et al. Population Pharmacokinetics of Fluticasone Propionate/Salmeterol uisng two different dry powder inhalers. Eur J Pharm Sci. 2015;80:33–42.

    Article  CAS  PubMed  Google Scholar 

  64. Mehta R, Pefani E, Beerahee M, Brealey N, Barnacle H, Birk R, et al. Population Pharmacokinetic Analysis of Fluticasone Furoate/Umeclidinium/Vilanterol via a Single Inhaler in Patients with COPD. J Clin Pharmacol. 2018;58(11):1461–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mehta R, Farrell C, Hayes S, Birk R, Okour M, Lipson DA. Population Pharmacokinetic Analysis of Fluticasone Furoate/Umeclidinium Bromide/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. Clin Pharmacokinet. 2020;59(1):67–79.

    Article  CAS  PubMed  Google Scholar 

  66. Bartels C, Looby M, Sechaud R, Kaiser G. Determination of the pharmacokinetics of glycopyrronium in the lung using a population pharmacokinetic modelling approach. Br J Clin Pharmacol. 2013;76(6):868–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ambery CL, Wielders P, Ludwig-Sengpiel A, Chan R, Riley JH. Population Pharmacokinetics and Pharmacodynamics of GSK961081 (Batefenterol), a Muscarinic Antagonist and β2-Agonist, in Moderate-to-Severe COPD Patients: Substudy of a Randomized Trial. Drugs R D. 2015;15(3):281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Demin I, Bartels C, Graham G, Bieth B, Gautier A, Tillmann HC, et al. Population pharmacokinetics of IND/GLY (indacaterol/glycopyrronium) in COPD patients. Int J Clin Pharmacol Ther. 2016;54(6):405–15.

    Article  CAS  PubMed  Google Scholar 

  69. Borghardt JM, Weber B, Staab A, Kunz C, Formella S, Kloft C. Investigating pulmonary and systemic pharmacokinetics of inhaled olodaterol in healthy volunteers using a population pharmacokinetic approach. Br J Clin Pharmacol. 2016;81(3):538–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang S, Lee L, Pascoe S. Population Pharmacokinetics Modeling of inhaled umeclidinium for adult patients with asthma. Eur J Drug Metab Pharmacokinet. 2016;42(1):https://doi.org/10.1007/s13318-016-0331-8.

  71. Goyal N, Beerahee M, Kalberg C, Church A, Kilbride S, Mehta R. Population pharmacokinetics of inhaled umeclidinium and vilanterol in patients with chronic obstructive pulmonary disease. Clin Pharmacokinet. 2014;53(7):637–48.

    Article  CAS  PubMed  Google Scholar 

  72. Parra-Guillen ZP, Weber B, Sharma A, Freijer J, Retlich S, Borghardt JM, et al. Population Pharmacokinetic Analysis of Tiotropium in Healthy Volunteers after Intravenous Administration and Inhalation. J Pharmacokinet Pharmacodyn. 2014;41 Suppl 1:S54. Available from: https://www.researchgate.net/publication/270396120_Population_Pharmacokinetic_Analysis_of_Tiotropium_in_Healthy_Volunteers_after_Intravenous_Administration_and_Inhalation Accessed on 19 Nov 2020

  73. FDA. Guidance for industry: population pharmacokinetics. US Department of Health and Human Services; Food and Drug Administration; Centre for Drug Evaluation and Research & Centre for Biologics Evaluation and Research. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/population-pharmacokinetics Accessed on 19 Nov 2020

  74. Ette EI, Williams PJ. Population pharmacokinetics I: Background, concepts, and models. Ann Pharmacother. 2004;38(10):1702–6.

    Article  PubMed  Google Scholar 

  75. Shen DLZ. Population pharmacokinetics studies with nonlinear mixed effects modeling. Available from: support.sas.com/resources/papers/proceedings/proceedings/forum2007/148–2007.pdf.

  76. Kim TH, Shin S, Shin BS. Model-based drug development: application of modeling and simulation in drug development. J Pharm Investig. 2018;48(4):431–41.

    Article  CAS  Google Scholar 

  77. Dartois C, Brendel K, Comets E, Laffont CM, Laveille C, Tranchand B, et al. Overview of model-building strategies in population PK/PD analyses: 2002–2004 Literature survey. Br J Clin Pharmacol. 2007;64(5):603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lavé T, Parrott N, Grimm HP, Fleury A, Reddy M. Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica. 2007;37(10–11):1295–310.

    Article  PubMed  CAS  Google Scholar 

  79. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51:45–73. Accessed on 19 Nov 2020

    Article  CAS  PubMed  Google Scholar 

  80. Lionberger R. New tools for generic orally inhaled drug products to maximize prospects of food and drug administration approval. Respir Drug Deliv. 2018;1:221–30.

  81. Weber B, Hochhaus G. A pharmacokinetic simulation tool for inhaled corticosteroids. AAPS J. 2013;15(1):159–71.

    Article  CAS  PubMed  Google Scholar 

  82. Edginton AN, Joshi G. Have physiologically-based pharmacokinetic models delivered? Expert Opin Drug Metab Toxicol. 2011;7:929–34.

    Article  CAS  PubMed  Google Scholar 

  83. Jones HM. Physiologically based pharmacokinetic modelling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

    Article  CAS  PubMed  Google Scholar 

  84. Chaudhuri SR, Lukacova V, Woltosz WS. Simulating the disposition of budesonide from dry powder inhalers (DPIs) and nebulizers. 2013; Available from: https://www.simulations-plus.com/assets/Chaudhuri-Modeling_Disp_Budesonide_IV_Oral_Admin_Healthy_Adult_Subjects-AAPS-2013.pdf Accessed on 19 Nov 2020

  85. Caniga M, Cabal A, Mehta K, Ross DS, Gil MA, Woodhouse JD, et al. Preclinical experimental and mathematical approaches for assessing effective doses of inhaled drugs, using mometasone to support human dose predictions. J Aerosol Med Pulm Drug Deliv. 2016;29(4):362–77.

    Article  CAS  PubMed  Google Scholar 

  86. Boger E, Evans N, Chappell M, Lundqvist A, Ewing P, Wigenborg A, et al. Systems pharmacology approach for prediction of pulmonary and systemic pharmacokinetics and receptor occupancy of inhaled drugs. CPT: Pharmacomet Syst Pharmacol. 2016;5(4):201–10.

    CAS  Google Scholar 

  87. Boger E, Wigström O. A partial differential equation approach to inhalation physiologically based pharmacokinetic modeling. CPT: Pharmacomet Syst Pharmacol. 2018;7:638–46.

    CAS  Google Scholar 

  88. Boger E, Fridén M. Physiologically based pharmacokinetic/pharmacodynamic modeling accurately predicts the better bronchodilatory effect of inhaled versus oral salbutamol dosage forms. J Aerosol Med Pulm Drug Deliv. 2019;32(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  89. Weber B, Hochhaus G. A systematic analysis of the sensitivity of plasma pharmacokinetics to detect differences in the pulmonary performance of inhaled fluticasone propionate products using a Model-Based Simulation Approach. AAPS J. 2015;17(4):999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Higashimori M, Ishikawa K, Gillen M, Zhou D. Physiologically based pharmacokinetic modelling of glycopyrronium in patients with renal impairment. J Pharm Sci. https://doi.org/10.1016/j.xphs.2020.03.014

  91. Huang F, Zhu Q, Zhou X, Gou D, Yu J, Li R, et al. Role of CFD based in silico modelling in establishing an in vitro in vivo correlation of aerosol deposition in the respiratory tract. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2020.09.007.

Download references

Acknowledgements

The authors humbly thank Megha Kale (Librarian, Cipla Ltd) for immense support in referencing literature.

Author information

Authors and Affiliations

Authors

Contributions

Juliet Rebello was responsible for the conducting searches as per the search strategy, collecting the data and summarizing it. Dr. Sharvari Shukla reviewed the information. Dr. Bill Brashier helped improve the clarity of the manuscript in presentation and reviewed the technical content. He was employed at Cipla Ltd at the time of submission of this manuscript.

Corresponding author

Correspondence to Juliet Rebello.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebello, J., Brashier, B. & Shukla, S. Assessment of the predictive capability of modelling and simulation to determine bioequivalence of inhaled drugs: A systematic review. DARU J Pharm Sci 30, 229–243 (2022). https://doi.org/10.1007/s40199-021-00423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-021-00423-7

Keywords

Navigation