Skip to main content

Bioassay-Guided extraction of andrographis paniculata for intervention of in-vitro prostate cancer progression in metabolic syndrome environment

Abstract

Background

Metabolic syndrome (MetS) is a risk factor for prostate cancer (PCa) progression. Thus, this life-threatening disease demands a proactive treatment strategy. Andrographis paniculata (AP) is a promising candidate with various medicinal properties. However, the bioactivity of AP is influenced by its processing conditions especially the extraction solvent.

Objective

In the present study, bioassay-guided screening technique was employed to identify the best AP extract in the management of MetS, PCa, and MetS-PCa co-disease in vitro.

Methods

Five AP extracts by different solvent systems; APE1 (aqueous), APE2 (absolute methanol), APE3 (absolute ethanol), APE4 (40% methanol), and APE5 (60% ethanol) were screened through their phytochemical profile, in-vitro anti-cancer, anti-obese, and anti-hyperglycemic properties. The best extract was further tested for its potential in MetS-induced PCa progression.

Results

APE2 contained the highest andrographolide (1.34 ± 0.05 mg/mL) and total phenolic content (8.85 ± 0.63 GAE/gDW). However, APE3 has the highest flavonoid content (11.52 ± 0.80 RE/gDW). APE2 was also a good scavenger of DPPH radicals (EC50 = 397.0 µg/mL). In cell-based assays, among all extracts, APE2 exhibited the highest antiproliferative activity (IC50 = 57.5 ± 11.8 µg/mL) on DU145 cancer cell line as well as on its migration activity. In in-vitro anti-obese study, all extracts significantly reduced lipid formation in 3T3-L1 cells. The highest insulin-sensitizing and -mimicking actions were exerted by both APE2 and APE3. Taken together, APE2 showed collectively good activity in the inhibition of PCa progression and MetS manifestation in vitro, compared to other extracts. Therefore, APE2 was further investigated for its potential to intervene DU145 progression induced with leptin (10–100 ng/mL) and adipocyte conditioned media (CM) (10% v/v). Interestingly, APE2 significantly diminished the progression of the cancer cell that has been pre-treated with leptin and CM through cell cycle arrest at S phase and induction of cell death.

Conclusion

In conclusion, AP extracts rich with andrographolide has the potential to be used as an alternative to ameliorate PCa progression induced by factors highly expressed in MetS.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Azizah AM, et al. Malaysia national cancer registry report (MNCR) 2012–2016. 2019, National Cancer Institute: Putrajaya.

  2. Pakzad R, et al. The incidence and mortality of prostate cancer and its relationship with development in Asia. Prostate International. 2015;3(4):135–40.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Esposito K, et al. Effect of metabolic syndrome and its components on prostate cancer risk: Meta-analysis. J Endocrinol Invest. 2013;36(2):132–9.

    CAS  PubMed  Article  Google Scholar 

  4. Xiang Y-Z, et al. The association between metabolic syndrome and the risk of prostate cancer, high-grade prostate cancer, advanced prostate cancer, prostate cancer-specific mortality and biochemical recurrence. J Exp Clin Cancer Res. 2013;32(1):9.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Noda T, et al. Long-term exposure to leptin enhances the growth of prostate cancer cells. Int J Oncol. 2015;46(4):1535–42.

    CAS  PubMed  Article  Google Scholar 

  6. Hoda MR, et al. The adipocyte-derived hormone leptin has proliferative actions on androgen-resistant prostate cancer cells linking obesity to advanced stages of prostate cancer. Journal of oncology, 2012. 2012.

  7. Avtanski DB, et al. Honokiol activates LKB1-miR-34a axis and antagonizes the oncogenic actions of leptin in breast cancer. Oncotarget. 2015;6(30):29947–62.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Mishra SK, Sangwan NS, Sangwan RS. Phcog Rev.: Plant Review Andrographis paniculata (Kalmegh): A Review. Pharmacognosy Reviews. 2007. 1(2): p. 283–298.

  9. Chao W-W, et al. Inhibitory effects of ethyl acetate extract of Andrographis paniculata on NF-kB trans-activation activity and LPS-induced acute inflammation in mice. Evidence-Based Complementary and Alternative Medicine. 2011;2011:9.

    Article  Google Scholar 

  10. Saxena RC, et al. A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmColdTM) in patients with uncomplicated upper respiratory tract infection. Phytomedicine. 2010;17(3):178–85.

    CAS  PubMed  Article  Google Scholar 

  11. Wang S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25(4):363–76.

    CAS  PubMed  Article  Google Scholar 

  12. Varma A, Padh H, Shrivastava N. Andrographolide: A New Plant-Derived Antineoplastic Entity on Horizon. Evidence-Based Complementary and Alternative Medicine, 2011. 2011.

  13. Wong TS, et al. Synergistic antihyperglycaemic effect of combination therapy with gallic acid and andrographolide in streptozotocin-induced diabetic rats. Biocatalysis and Agricultural Biotechnology. 2019. 18:101048.

  14. Ismail HF, et al. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J Tradit Complement Med. 2017;7(4):452–65.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Suhaimi SH, et al. Optimization of ultrasound-assisted extraction conditions followed by solid phase extraction fractionation from Orthosiphon stamineus Benth (Lamiace) leaves for antiproliferative effect on prostate cancer cells. Molecules. 2019;24(22):4183.

    CAS  PubMed Central  Article  Google Scholar 

  16. Soib HH, et al. Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities. Molecules. 2020. 25(3):517.

  17. Ismail HF, Majid FAA, Hashim Z. Eugenia Polyantha Enhances Adipogenesis via CEBP-Α and Adiponectin Overexpression in 3T3-L1. Chem Eng Trans. 2017;58:1117–22.

    Google Scholar 

  18. Ismail HF. Anti-Diabetes Mechanism of Action By SynacinnTM In Adipocytes. 2018. Universiti Teknologi Malaysia.

  19. Zhang S-Q, Bi H-M, Liu C-J. Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Sep Purif Technol. 2007;57(2):277–82.

    CAS  Article  Google Scholar 

  20. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33.

    CAS  PubMed  Article  Google Scholar 

  21. Patel DK, et al. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2012;2(4):320–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Ko J-H, et al. Conditioned media from adipocytes promote proliferation, migration, and invasion in melanoma and colorectal cancer cells. J Cell Physiol. 2019;234(10):18249–61.

    CAS  PubMed  Article  Google Scholar 

  23. Amini N, et al. CervicareTM induces apoptosis in HeLa and CaSki cells through ROS production and loss of mitochondrial membrane potential. RSC Adv. 2016;6(29):24391–417.

    CAS  Article  Google Scholar 

  24. Ajaya Kumar R, et al. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol. 2004;92(2):291–5.

    PubMed  Article  CAS  Google Scholar 

  25. Suzuki R, et al. Cytotoxic components against human oral squamous cell carcinoma isolated from Andrographis paniculata. Anticancer Res. 2016;36(11):5931–5.

    CAS  PubMed  Article  Google Scholar 

  26. Li L, et al. The adjuvant value of Andrographis paniculata in metastatic esophageal cancer treatment – from preclinical perspectives. Sci Rep. 2017;7(1):854.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Fadeyi SA, et al. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med. 2013;13(1):1–10.

    Article  Google Scholar 

  28. Rummun N, et al. Antiproliferative activity of Syzygium coriaceum, an endemic plant of Mauritius, with its UPLC-MS metabolite fingerprint: A mechanistic study. PloS one. 2021. 16(6):e0252276.

  29. Murakami M, et al. Improving Drug Potency and Efficacy by Nanocarrier-Mediated Subcellular Targeting. Science Translational Medicine. 2011. 3(64):64ra2.

  30. Midya DK, Pramanik KC, Chatterjee TK. Effect of Andrographolide-Encapsulated Liposomal Formulation on Hepatic Damage and Oxidative Stress. Int J Biomed Pharm Sci. 2009;3(1):55–9.

    Google Scholar 

  31. Casamonti M, et al. Andrographolide Loaded in Micro- and Nano-Formulations: Improved Bioavailability, Target-Tissue Distribution, and Efficacy of the “King of Bitters”. Engineering. 2019;5(1):69–75.

    CAS  Article  Google Scholar 

  32. Li H, et al. Andrographolide-loaded solid lipid nanoparticles enhance anti-cancer activity against head and neck cancer and precancerous cells. Oral Diseases. n/a(n/a).

  33. Yang T, et al. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways. Drug Des Dev Ther. 2016;10:1389–97.

    CAS  Article  Google Scholar 

  34. Liu C, et al. Andrographolide targets androgen receptor pathway in castration-resistant prostate cancer. Genes Cancer. 2011;2(2):151–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Forestier-Román IS, et al. Andrographolide induces DNA damage in prostate cancer cells. Oncotarget. 2019;10(10):1085–101.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Wu Q, et al. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Menezes ME, et al. Chapter Eight - Genetically Engineered Mice as Experimental Tools to Dissect the Critical Events in Breast Cancer, in Advances in Cancer Research, K.D. Tew and P.B. Fisher, Editors. 2014. Academic Press. p. 331–382.

  38. Skurk T, et al. Relationship between Adipocyte Size and Adipokine Expression and Secretion. J Clin Endocrinol Metab. 2007;92(3):1023–33.

    CAS  PubMed  Article  Google Scholar 

  39. Roubert A, et al. The influence of tumor necrosis factor-α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women. Oncotarget. 2017;8(22):36127–36.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Schnäbele K, et al. Effects of adipocyte-secreted factors on cell cycle progression in HT29 cells. Eur J Nutr. 2009;48(3):154.

    PubMed  Article  CAS  Google Scholar 

  41. Banerjee M, et al. Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci. 2016;23(1):40.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia (New York, N.Y.). 2000. 2(4):291–299.

  43. Cheung H-Y, et al. Andrographolide Isolated from Andrographis paniculata Induces Cell Cycle Arrest and Mitochondrial-Mediated Apoptosis in Human Leukemic HL-60 Cells. Planta Med. 2005;71(12):1106–11.

    CAS  PubMed  Article  Google Scholar 

  44. Lim SC, et al. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells. Oncol Lett. 2017;13(5):3837–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Ye J, et al. Non-apoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett. 2018;420:210–27.

    CAS  PubMed  Article  Google Scholar 

  46. Chen M, Xie C, Liu L. Solubility of Andrographolide in Various Solvents from (288.2 to 323.2) K. J Chem Eng Data. 2010. 55(11):5297–5298.

  47. Kumoro AC, Hasan M, Singh H. Effects of solvent properties on the Soxhlet extraction of diterpenoid lactones from Andrographis paniculata leaves. Science Asia. 2009;35(1):306–9.

    CAS  Article  Google Scholar 

  48. Kumar S, Dhanani T, Shah S. Extraction of Three Bioactive Diterpenoids from Andrographis paniculata: Effect of the Extraction Techniques on Extract Composition and Quantification of Three Andrographolides Using High-Performance Liquid Chromatography. J Chromatogr Sci. 2013;52(9):1043–50.

    PubMed  Article  CAS  Google Scholar 

  49. Lin H, et al. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata. Int J Biol Macromol. 2017;102:208–17.

    CAS  PubMed  Article  Google Scholar 

  50. Thoo Y, et al. A binary solvent extraction system for phenolic antioxidants and its application to the estimation of antioxidant capacity in Andrographis paniculata extracts. Int Food Res J. 2013. 20(3).

  51. Do QD, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014;22(3):296–302.

    CAS  PubMed  Article  Google Scholar 

  52. Babu PR, et al.  Solubility Enhancement of Cox-II Inhibitors by Cosolvency Approach. 1970. - 7(- 2).

  53. Dhanani T, et al. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem. 2017;10:S1193–9.

    CAS  Article  Google Scholar 

  54. Luong D, Sephton MA, Watson JS. Subcritical water extraction of organic matter from sedimentary rocks. Anal Chim Acta. 2015;879:48–57.

    CAS  PubMed  Article  Google Scholar 

  55. Albright PS, Gosting LJ. Dielectric constants of the methanol-water system from 5 to 55°1. J Am Chem Soc. 1946;68(6):1061–3.

    CAS  PubMed  Article  Google Scholar 

  56. Saha A, Tiwary AS, Mukherjee AK. Charge transfer interaction of 4-acetamidophenol (paracetamol) with 2,3-dichloro-1,4-naphthoquinone: A study in aqueous ethanol medium by UV–vis spectroscopic and DFT methods. Spectrochim Acta Part A Mol Biomol Spectrosc. 2008;71(3):835–40.

    Article  CAS  Google Scholar 

  57. Chao C-Y, et al. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis. 2013;34(8):1843–51.

    CAS  PubMed  Article  Google Scholar 

  58. Webb AH, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 2017;17(1):434.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Zhang L, et al. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep. 2012;39(5):5085–93.

    CAS  PubMed  Article  Google Scholar 

  60. Pratheeshkumar P, Kuttan G. Andrographolide Inhibits Human Umbilical Vein Endothelial Cell Invasion and Migration by Regulating MMP-2 and MMP-9 During Angiogenesis. Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer. 2011;30:33–41.

    CAS  Article  Google Scholar 

  61. Xie F, et al. TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin. 2017;50(1):121–32.

    Article  CAS  Google Scholar 

  62. Islam M, et al. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett. 2018. 420.

  63. Chen CC, et al. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation. Toxicol Appl Pharmacol. 2016;307:115–22.

    CAS  PubMed  Article  Google Scholar 

  64. Koteswara Rao Y, et al. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry. 2004;65(16):2317–21.

    CAS  PubMed  Article  Google Scholar 

  65. Jeong JM, et al. Antioxidant and chemosensitizing effects of flavonoids with hydroxy and/or methoxy groups and structure-activity relationship. J Pharm Pharm Sci. 2007;10(4):537–46.

    CAS  PubMed  Article  Google Scholar 

  66. Chen H-W, Chen C-C. Andrographis paniculata ameliorates insulin resistance in high fat diet-fed mice and 3T3-L1 adipocytes. Curr Dev Nutr. 2019. 3(Supplement_1).

  67. Jin L, et al. Andrographolide attenuates tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes. Mol Cell Endocrinol. 2011;332(1):134–9.

    CAS  PubMed  Article  Google Scholar 

  68. Moradi B, et al. The most useful medicinal herbs to treat diabetes. Biomedical Research and Therapy. 2018;5(8):2538–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosnani Hasham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Idris, M.K.H., Hasham, R. & Ismail, H.F. Bioassay-Guided extraction of andrographis paniculata for intervention of in-vitro prostate cancer progression in metabolic syndrome environment. DARU J Pharm Sci (2022). https://doi.org/10.1007/s40199-021-00414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40199-021-00414-8

Keywords

  • Metabolic syndrome
  • Prostate cancer
  • Andrographis paniculata
  • Obesity
  • Hyperglycemia
  • Leptin