Skip to main content

Advertisement

Log in

Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Biological activities of Pistacia atlantica have been investigated for few decades. The fruit oil of the plant has been used for treatment of wounds, inflammation, and other ailments in Traditional Persian Medicine (TPM).

Objectives

The main objectives of this study were to analyze the chemical composition of Pistacia atlantica fruit oil and to study wound healing and anti-inflammatory effects of oil-absorbed bacterial cellulose in an in vivo burn wound model.

Method

Bacterial cellulose membrane was prepared from Kombucha culture and Fourier-transform infrared was used to characterize the bacterial cellulose. Cold press technique was used to obtain Pistacia atlantica fruit oil and the chemical composition was analyzed by gas chromatography. Bacterial cellulose membrane was impregnated with the Pistacia atlantica fruit oil. Pistacia atlantica hydrogel was prepared using specific Carbopol. Burn wound model was used to evaluate in vivo wound healing and anti-inflammatory effects of the wound dressings containing either silver sulfadiazine as positive control, Pistacia atlantica hydrogel or bacterial cellulose membrane coated with the Pistacia atlantica fruit oil. Blank dressing was used as negative control.

Results

FT-IR analysis showed that the structure of the bacterial cellulose corresponded with the standard FT-IR spectrum. The major components of Pistacia atlantica fruit oil constituted linoleic acid (38.1%), oleic acid (36.9%) and stearic acid (3.8%). Histological analysis showed that bacterial cellulose coated with fruit oil significantly decreased the number of neutrophils as a measure of inflammation compared to either negative control or positive control (p < 0.05). Wound closure occurred faster in the treated group with fruit oil-coated bacterial cellulose compared to the other treatments (p < 0.05).

Conclusion

The results showed that bacterial cellulose coated with Pistacia atlantica fruit oil can be a potential bio-safe dressing for wound management.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

copyright and therefore in the public domain, because it consists entirely of information that is common property and contains no original authorship)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Farhoosh R, Khodaparast MHH, Sharif A. Bene hull oil as a highly stable and antioxidative vegetable oil. Eur J Lipid Sci Technol. 2009;111(12):1259–65.

    Article  CAS  Google Scholar 

  2. Farhoosh R, Tavassoli-Kafrani MH, Sharif A. Antioxidant activity of the fractions separated from the unsaponifiable matter of bene hull oil. Food Chem. 2011;126(2):583–9.

    Article  CAS  Google Scholar 

  3. Delazar A, Reid RG, Sarker SD. GC-MS Analysis of the Essential Oil from the Oleoresin of Pistacia atlantica var. mutica. Chem Nat Compd. 2004;40(1):24–7.

    Article  CAS  Google Scholar 

  4. Khedir SB, Bardaa S, Chabchoub N, Moalla D, Sahnoun Z, Rebai T. The healing effect of Pistacia lentiscus fruit oil on laser burn. Pharm Biol. 2017;55(1):1407–14.

    Article  PubMed  CAS  Google Scholar 

  5. Charef M, Yousfi M, Saidi M, Stocker P. Determination of the Fatty Acid Composition of Acorn (Quercus), Pistacia lentiscus Seeds Growing in Algeria. J Am Oil Chem Soc. 2008;85(10):921–4.

    Article  CAS  Google Scholar 

  6. McGaw L, Jäger A, Staden J, Houghton PJ. Antibacterial effects of fatty acids and related compounds from plants. S Afr J Bot. 2002;68:417–23.

    Article  CAS  Google Scholar 

  7. Ribeiro Barros Cardoso C, Aparecida Souza M, Amália Vieira Ferro E, Favoreto JRS, Deolina Oliveira Pena J. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 2004;12(2):235–43.

    Article  Google Scholar 

  8. Huang TH, Wang PW, Yang SC, Chou WL, Fang JY. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin Mar Drugs. 2018;16(8).

  9. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. Microbial cellulose–the natural power to heal wounds. Biomaterials. 2006;27(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  10. Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci. 2000;35(2):261–70.

    Article  CAS  Google Scholar 

  11. Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr Rev Food Sci Food Saf. 2014;13(4):538–50.

    Article  PubMed  Google Scholar 

  12. Abeer MM, Mohd Amin MC, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol. 2014;66(8):1047–61.

    Article  CAS  PubMed  Google Scholar 

  13. Pértile RAN, Moreira S, Gil da Costa RM, Correia A, Guãrdao L, Gartner F, Vilanova M, Gama M. Bacterial Cellulose: Long-Term Biocompatibility Studies. J Biomater Sci Polym Ed. 2012;23(10):1339–54.

    Article  PubMed  CAS  Google Scholar 

  14. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302–25.

    Article  CAS  Google Scholar 

  15. Andrade FK, Alexandre N, Amorim I, Gartner F, Maurício AC, Luís AL, Gama M. Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym. 2013;28(1):97–112.

    Article  CAS  Google Scholar 

  16. Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Souza SJ, Narcisco GP, Bichara JA, Farah LF. Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol. 1990;24–25:253–64.

    Article  PubMed  Google Scholar 

  17. Lin Y-K, Chen K-H, Ou K-L, Liu M. Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym. 2011;26(5):508–18.

    Article  CAS  Google Scholar 

  18. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials. 2006;27(9):2141–9.

    Article  PubMed  CAS  Google Scholar 

  19. Novaes AB Jr, Novaes AB. Immediate implants placed into infected sites: a clinical report. Int J Oral Maxillofac Implants. 1995;10(5):609–13.

    PubMed  Google Scholar 

  20. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol. 2017;104(Pt A):97–106.

    Article  CAS  PubMed  Google Scholar 

  21. Gore MA, Akolekar D. Evaluation of banana leaf dressing for partial thickness burn wounds. Burns. 2003;29(5):487–92.

    Article  PubMed  Google Scholar 

  22. Ghosh A, Bharat R. Domestic burns prevention and first aid awareness in and around Jamshedpur, India: strategies and impact. Burns. 2000;26(7):605–8.

    Article  CAS  PubMed  Google Scholar 

  23. Chen C, Liu BY. Changes in major components of tea fungus metabolites during prolonged fermentation. J Appl Microbiol. 2000;89(5):834–9.

    Article  CAS  PubMed  Google Scholar 

  24. Treviño-Garza MZ, Guerrero-Medina AS, González-Sánchez RA, García-Gómez C, Guzmán-Velasco A, Báez-González JG, Márquez-Reyes JM. Production of Microbial Cellulose Films from Green Tea (Camellia Sinensis) Kombucha with Various Carbon Sources. Coatings. 2020;10(11):1132.

    Article  CAS  Google Scholar 

  25. Meftahi A, Nasrolahi D, Babaeipour V, Alibakhshi S, Shahbazi S. Investigation of Nano Bacterial Cellulose Coated by Sesamum Oil for Wound Dressing Application. Procedia Mater Sci. 2015;11:212–6.

    Article  CAS  Google Scholar 

  26. Shouqin Z, Junjie Z, Changzhen W. Novel high pressure extraction technology. Int J Pharm. 2004;278(2):471–4.

    Article  PubMed  CAS  Google Scholar 

  27. Andritsou V, de Melo EM, Tsouko E, Ladakis D, Maragkoudaki S, Koutinas AA, Matharu AS. Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources. ACS Omega. 2018;3(8):10365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossi F, Santoro M, Casalini T, Veglianese P, Masi M, Perale G. Characterization and Degradation Behavior of Agar-Carbomer Based Hydrogels for Drug Delivery Applications: Solute Effect. Int J Mol Sci. 2011;12(6):3394–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. AzimzadehAsiabi P, Ramazani A, Khoobi M, Amin M, Shakoori M, MirmohammadSadegh N, Farhadi R. Regenerated silk fibroin-based dressing modified with carnosine-bentonite nanosheets accelerates healing of second-degree burn wound. Chem Pap. 2020;74(10):3243–57.

    Article  CAS  Google Scholar 

  30. Cantürk NZ, Vural B, Cantürk Z, Esen N, Vural S, Solakoglu S, Kirkal G. The role of L-arginine and neutrophils on incisional wound healing. Eur J Emerg Med. 2001;8(4):311–5.

    Article  PubMed  Google Scholar 

  31. Choi Y-J, Ahn Y, Kang M-S, Jun H-K, Kim IS, Moon S-H. Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biotechnol. 2004;79(1):79–84.

    Article  CAS  Google Scholar 

  32. Nayak S, Nalabothu P, Sandiford S, Bhogadi V, Adogwa A. Evaluation of wound healing activity of Allamanda cathartica. L. and Laurus nobilis. L. extracts on rats. BMC Complement Altern Med. 2006;6(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Albayrak A, Demiryilmaz I, Albayrak Y, Aylu B, Ozogul B, Cerrah S, Celik M. The role of diminishing appetite and serum nesfatin-1 level in patients with burn wound infection. Iran Red Crescent Med J. 2013;15(5):389–92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Campos L, Mansilla M, Chica A. Topical chemotherapy for the treatment of burns. Rev enferm. 2005;28:67–70.

    Google Scholar 

  35. Mao-Qiang M, Elias PM, Feingold KR. Fatty acids are required for epidermal permeability barrier function. J Clin Invest. 1993;92(2):791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Givianrad MH, Saber-Tehrani M, JafariMohammadi SA. Chemical composition of oils from wild almond (Prunus scoparia) and wild pistachio (Pistacia atlantica). GRASAS ACEITES. 2013;64(1):77–84.

    Article  CAS  Google Scholar 

  37. Djerrou Z, Maameri Z, Hamdi-Pacha Y, Serakta M, Riachi F, Djaalab H, Boukeloua A. Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound’s healing in rabbits. Afr J Tradit Complement Altern Med. 2010;7(3):258–63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mehrabani M, Seyyedkazemi SM, Nematollahi MH, Jafari E, Mehrabani M, Mehdipour M, Sheikhshoaee Z, Mandegary A. Accelerated Burn Wound Closure in Mice with a New Formula Based on Traditional Medicine. Iran Red Crescent Med J. 2016;18(11):e26613.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mozaffarian V. A dictionary of Iranian plant names. Tehran: Farhang Moaser; 1996. p. 396.

    Google Scholar 

  40. Khatamsaz M. Flora of Iran. [Koenigstein, W. Germany]: Ministry of Agriculture, Iran; 1991.

  41. O’Meara SM, Cullum NA, Majid M, Sheldon TA. Systematic review of antimicrobial agents used for chronic wounds. Br J Surg. 2001;88(1):4–21.

    Article  CAS  PubMed  Google Scholar 

  42. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33(2):139–48.

    Article  PubMed  Google Scholar 

  43. Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007;15(1):94–104.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank Dr. Mohsen Amini for his assistance in GC analysis. We appreciate the collaboration of Dr. Gholamreza Amin for identifying the plant species and assigning scientific name.

Funding

National Institutes of Medical Research Development (NIMAD 958943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Amin.

Ethics declarations

Ethical approval

An animal study was conducted based on ethical guidelines of Iran National Committee for Ethics in Biomedical Research (IR.TUMS.MEDICINE.REC.1399.1194).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirmohammadsadegh, N., Shakoori, M., Moghaddam, H.N. et al. Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil. DARU J Pharm Sci 30, 1–10 (2022). https://doi.org/10.1007/s40199-021-00405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-021-00405-9

Keywords

Navigation