Optimization, in vitro release and toxicity evaluation of novel pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum semi-interpenetrating networks

Abstract

Background

In recent era, pH sensitive polymeric carriers that combines the materials engineering and medicine is gaining researcher’s attention as they maximizes drug concentration at site of absorption and reduces side effects for e.g. orally administered cetirizine HCl (CTZ HCl) upsets the stomach and furthermore shows high intestinal absorption. Thus, development of pH sensitive hydrogels with sufficient mechanical strength will be good candidate to address this issue.

Methods

Here, we developed pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum (IA-g-poly(AM)/sterculia gum) semi-interpenetrating network (semi-IPN) by free radical polymerization technique for intestinal delivery of CTZ HCL.

Results

Optimized formulation (I5) with 6% w/w IA showed negligible swelling at pH 1.2, and maximum swelling at pH 7.4. Solid state characterization of optimized formulation showed successful development of semi-IPN structure and incorporation of drug without any noticeable drug-carrier interaction. In vitro release study showed biphasic pH dependent release of CTZ HCl, where initial burst release was observed at acidic pH followed by sustained release at basic pH. Acute oral toxicity and histopathological studies confirmed the non-toxic nature of IA-g-poly(AM)/sterculia gum.

Conclusion

Conclusively, developed biocompatible semi-IPN hydrogels with sufficient pH sensitivity and mechanical strength could serve as a potential carrier for intestinal delivery of CTZ HCL to maximize its absorption and reduce side effects.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, et al. Nanofibrous and nanoparticle materials as drug-delivery systems. Nanostructures for Drug Delivery. Elsevier. 2017:239–70.

  2. 2.

    Singh B, Vashishtha M. Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery. Nucl Instrum Methods Phys Res, Sect B. 2008;266(9):2009–20.

    CAS  Article  Google Scholar 

  3. 3.

    Yar M, Shahzad S, Siddiqi SA, Mahmood N, Rauf A, Anwar MS et al. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis. Materials Science and Engineering: C. 2015;C 56:154–64. doi:https://doi.org/10.1016/j.msec.2015.06.021.

  4. 4.

    Kulkarni RV, Sa B. Novel pH-sensitive interpenetrating network hydrogel beads of carboxymethylcellulose-(polyacrylamide-grafted-alginate) for controlled release of ketoprofen: preparation and characterization. Current Drug Delivery. 2008;5(4):256–64.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Zhang J-T, Bhat R, Jandt KD. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater. 2009;5(1):488–97. https://doi.org/10.1016/j.actbio.2008.06.012.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Rizwan M, Yahya R, Hassan A, Yar M, Azzahari A, Selvanathan V, et al. pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. 2017;9(4):1–37.

    Google Scholar 

  7. 7.

    Singh B, Sharma N. Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr Polym. 2008;74(3):489–97.

    CAS  Article  Google Scholar 

  8. 8.

    Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym. 2010;79(4):898–907.

    CAS  Article  Google Scholar 

  9. 9.

    George M, Abraham T. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm. 2007;335(1–2):123–9.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kaith B, Sharma K, Kumar V, Kalia S, Swart H. Fabrication and characterization of gum ghatti-polymethacrylic acid based electrically conductive hydrogels. Synth Met. 2014;187:61–7.

    CAS  Article  Google Scholar 

  11. 11.

    Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, et al. Modified Gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials. 2010;31(29):7494–502.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Singh B, Sharma N. Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr Polym. 2008;74(3):489–97.

    CAS  Article  Google Scholar 

  13. 13.

    Bashir S, Teo YY, Ramesh S, Ramesh K. Synthesis and characterization of karaya gum-g-poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin. Polymer. 2018;147(4):108–20. https://doi.org/10.1016/j.polymer.2018.05.071.

    CAS  Article  Google Scholar 

  14. 14.

    Bera H, Boddupalli S, Nayak AK. Mucoadhesive-floating zinc-pectinate–sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl. Carbohydr Polym. 2015;131:108–18.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Singh B, Pal L. Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. Int J Biol Macromol. 2011;48(3):501–10.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Singh B, Sharma N. Modification of sterculia gum with methacrylic acid to prepare a novel drug delivery system. Int J Biol Macromol. 2008;43(2):142–50.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Faroon O, Mumtaz M, Ruiz P, Wohlers D. Draft toxicological profile for acrylamide. CDC stacks. 2009;104(1):191–238.

    Google Scholar 

  18. 18.

    Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers. 2011;3(4):1972–2009.

    CAS  Article  Google Scholar 

  19. 19.

    Caykara T, Kiper S, Demirel G. Thermosensitive poly (N-isopropylacrylamide-co-acrylamide) hydrogels: synthesis, swelling and interaction with ionic surfactants. Eur Polym J. 2006;42(2):348–55.

    CAS  Article  Google Scholar 

  20. 20.

    Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, et al. Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B. 2014;2(23):3646–58. https://doi.org/10.1039/C3TB21711F.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Dinu MV, Perju MM, Drăgan ES. Composite IPN ionic hydrogels based on polyacrylamide and dextran sulfate. React Funct Polym. 2011;71(8):881–90. https://doi.org/10.1016/j.reactfunctpolym.2011.05.010.

    CAS  Article  Google Scholar 

  22. 22.

    Katime I, Rodriguez E. Absorption of metal ions and swelling properties of poly (acrylic acid-co-itaconic acid) hydrogels. J Macromol Sci A. 2001;38(5–6):543–58.

    Article  Google Scholar 

  23. 23.

    Cavus S, Cakal E. Synthesis and characterization of novel poly (N-vinylcaprolactam-co-itaconic acid) gels and analysis of pH and temperature sensitivity. Ind Eng Chem Res. 2012;51(3):1218–26.

    CAS  Article  Google Scholar 

  24. 24.

    Bera R, Dey A, Chakrabarty D. Synthesis, characterization, and drug release study of acrylamide-co-itaconic acid based smart hydrogel. Polym Eng Sci. 2015;55(1):113–22.

    CAS  Article  Google Scholar 

  25. 25.

    Quintana JR, Valderruten NE, Katime I. Mechanical properties of poly (N-isopropyl-acrylamide-co-itaconic acid) hydrogels. J Appl Polym Sci. 2002;85(12):2540–5.

    CAS  Article  Google Scholar 

  26. 26.

    Katime I, Valderruten N, Quintana JR. Controlled release of aminophylline from poly (N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Int. 2001;50(8):869–79.

    CAS  Article  Google Scholar 

  27. 27.

    Caykara T, Doǧmuş M, Kantoǧlu Ö. Network structure and swelling–shrinking behaviors of pH-sensitive poly (acrylamide-co-itaconic acid) hydrogels. J Polym Sci B Polym Phys. 2004;42(13):2586–94.

    CAS  Article  Google Scholar 

  28. 28.

    Postulkova H, Chamradova I, Pavlinak D, Humpa O, Jancar J, Vojtova L. Study of effects and conditions on the solubility of natural polysaccharide gum karaya. Food Hydrocoll. 2017;67(4):148–56.

    CAS  Article  Google Scholar 

  29. 29.

    Abbasi M, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, et al. Novel biodegradable pH-sensitive hydrogels: an efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol. 2019;136:83–96.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Tang C, Yin C, Pei Y, Zhang M, Wu L. New superporous hydrogels composites based on aqueous Carbopol® solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. Eur Polym J. 2005;41(3):557–62.

    CAS  Article  Google Scholar 

  31. 31.

    Sohail K, Khan IU, Shahzad Y, Hussain T, Ranjha NM. pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: impact of material parameters on swelling and drug release. Brazilian Journal of Pharmaceutical Sciences. 2014;50(1):173–84.

    Article  Google Scholar 

  32. 32.

    Ranjha NM, Hanif M, Naz A, Shah MS, Abbas G, Afzal Z. Synthesis and characterization of cetirizine−containing, pH−sensitive acrylic acid/poly (vinyl alcohol) hydrogels. Journal of Applied Polymer Science. 2016;133(19):(1–8).

  33. 33.

    Afzal S, Khan S, Ranjha NM, Jalil A, Riaz A, Haider MS, et al. The structural, Crystallinity, and thermal properties of pH-responsive interpenetrating gelatin/sodium alginate-based polymeric composites for the controlled delivery of cetirizine HCl. Turkish Journal of Pharmaceutical Sciences. 2018;15(1):63–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Adebisi AO, Laity PR, Conway BR. Formulation and evaluation of floating mucoadhesive alginate beads for targeting H elicobacter pylori. J Pharm Pharmacol. 2015;67(4):511–24.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, et al. Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol. 2008;19(6):647–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Hindi S, Albureikan MO, Al-Ghamdi AA, Alhummiany H, Ansari MS. Synthesis, characterization and biodegradation of gum Arabic-based bioplastic membranes. Nanosci Nanotechnol. 2017;4(2):32–42.

    CAS  Google Scholar 

  37. 37.

    Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym. 2006;65(3):243–52.

    CAS  Article  Google Scholar 

  38. 38.

    Khan MI, Murtaza G, Sher M, Iqbal M, Waqas MK, Rasool A, et al. Development and validation of stability indicating assay method of cetirizine hydrochloride by HPLC. Afr J Pharm Pharmacol. 2011;5(2):143–9.

    CAS  Article  Google Scholar 

  39. 39.

    Hroch BJ. Fakulta chemicko-technologická Katedra anorganické technologie. 2014.

  40. 40.

    Cheng W-M, Hu X-M, Zhao Y-Y, Wu M-Y, Hu Z-X, Yu X-T. Preparation and swelling properties of poly (acrylic acid-co-acrylamide) composite hydrogels. e-Polymers. 2017;17(1):95–106.

    CAS  Article  Google Scholar 

  41. 41.

    Tang C, Yin L, Yu J, Yin C, Pei Y. Swelling behavior and biocompatibility of Carbopol-containing superporous hydrogel composites. J Appl Polym Sci. 2007;104(5):2785–91.

    CAS  Article  Google Scholar 

  42. 42.

    Milosavljevic NB, Milasinovic NZ, Popovic IG, Filipovic JM, Kalagasidis Krusic MT. Preparation and characterization of pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Polym Int. 2011;60(3):443–52.

    CAS  Article  Google Scholar 

  43. 43.

    Sakthivel M, Franklin D, Guhanathan S. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications. Ecotoxicol Environ Saf. 2016;134(2):427–32.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Abdullah O, Usman Minhas M, Ahmad M, Ahmad S, Barkat K, Ahmad A. Synthesis, optimization, and evaluation of polyvinyl alcohol-based hydrogels as controlled combinatorial drug delivery system for colon cancer. Adv Polym Technol. 2018;37(8):3348–63.

    CAS  Article  Google Scholar 

  45. 45.

    Ajaz N, Khan IU, Khalid I, Khan RU, Khan HA, Asghar S, et al. In vitro and toxicological assessment of dexamethasone sodium phosphate loaded pH sensitive pectin-g-poly (AA)/PVP semi interpenetrating network. Materials Today Communications. 2020;25:101325. https://doi.org/10.1016/j.mtcomm.2020.101325.

    CAS  Article  Google Scholar 

  46. 46.

    Barkat K, Ahmad M, Usman Minhas M, Khalid I, Nasir B. Development and characterization of pH-responsive polyethylene glycol−co−poly (methacrylic acid) polymeric network system for colon target delivery of oxaliplatin: its acute oral toxicity study. Adv Polym Technol. 2018;37(6):1806–22.

    CAS  Article  Google Scholar 

  47. 47.

    Ali L, Ahmad M, Aamir MN, Minhas MU, Rasul A, Yousuf M, et al. Venlafaxine-loaded sustained-release poly (hydroxyethyl methacrylate-co-itaconic acid) hydrogel composites: their synthesis and in vitro/in vivo attributes. Iran Polym J. 2019;28(3):251–8.

    CAS  Article  Google Scholar 

  48. 48.

    Khan IU, Serra CA, Anton N, Vandamme T. Continuous-flow encapsulation of ketoprofen in copolymer microbeads via co-axial microfluidic device: influence of operating and material parameters on drug carrier properties. Int J Pharm. 2013;441(1–2):809–17. https://doi.org/10.1016/j.ijpharm.2012.12.024.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Khalid I, Ahmad M, Minhas MU, Barkat K. Preparation and characterization of alginate-PVA-based semi-IPN: controlled release pH-responsive composites. Polym Bull. 2018;75(3):1075–99.

    CAS  Article  Google Scholar 

  50. 50.

    Malana MA. Bukhari J-u-D, Zohra R. synthesis, swelling behavior, and network parameters of novel chemically crosslinked poly (acrylamide-co-methacrylate-co-acrylic acid) hydrogels. Designed Monomers and Polymers. 2014;17(3):266–74. https://doi.org/10.1080/15685551.2013.840501.

    CAS  Article  Google Scholar 

  51. 51.

    Lanthong P, Nuisin R, Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym. 2006;66(2):229–45. https://doi.org/10.1016/j.carbpol.2006.03.006.

    CAS  Article  Google Scholar 

  52. 52.

    Barkat K, Ahmad M, Minhas MU, Khalid I. Oxaliplatin-loaded crosslinked polymeric network of chondroitin sulfate−co−poly (methacrylic acid) for colorectal cancer: its toxicological evaluation. J Appl Polym Sci. 2017;134(38):45312.

    Article  CAS  Google Scholar 

  53. 53.

    Hussain T, Ranjha NM, Shahzad Y. Swelling and controlled release of tramadol hydrochloride from a pH-sensitive hydrogel. Designed Monomers and Polymers. 2011;14(3):233–49.

    CAS  Article  Google Scholar 

  54. 54.

    Sovizi MR. Hosseini, Seyed Ghorban. Studies on the thermal behavior and decomposition kinetic of drugs cetirizine and simvastatin. J Therm Anal Calorim. 2013;111(3):2143–8.

    CAS  Article  Google Scholar 

  55. 55.

    Katewongsa P, Lertsuphotvanit N, Phaechamud T. Cetirizine Dihydrochloride, beta-Cyclodextrin inclusion complex by ethanol kneading for taste masking. Indian J Pharm Sci. 2017;79(5):758–67.

    CAS  Article  Google Scholar 

  56. 56.

    Rice KS. Aqueous nonwoven binder and treated nonwoven prepared therefrom. Google Patents; 2012.

  57. 57.

    Maurer J, Schulz D, Siano D, Bock J. Thermal Analysis of Acrylamide-Based Polymers. Analytical Calorimetry. Springer; 1984. p. 43–55.

  58. 58.

    Kumbar SG, Soppimath KS, Aminabhavi TM. Synthesis and characterization of polyacrylamide−grafted chitosan hydrogel microspheres for the controlled release of indomethacin. J Appl Polym Sci. 2003;87(9):1525–36.

    CAS  Article  Google Scholar 

  59. 59.

    Dong K, Dong Y, You C, Xu W, Huang X, Yan Y, et al. Assessment of the drug loading, in vitro and in vivo release behavior of novel pH-sensitive hydrogel. Drug delivery. 2016;23(1):174–84. https://doi.org/10.3109/10717544.2014.908329.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Sachan A, Gupta A, Nigam L, Sharma R, Gangwar S. Design and characterization of solid dispersion based fast dissolving tablet of cetirizine hydrochloride. MIT International Journal of Pharmaceutical Sciences. 2015;1(1):37–44.

    Google Scholar 

  61. 61.

    Sood S, Gupta VK, Agarwal S, Dev K, Pathania D. Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol. 2017;101(5):612–20.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Kalagasidis Krusic M, Ilic M, Filipovic J. Swelling behaviour and paracetamol release from poly (N-isopropylacrylamide-itaconic acid) hydrogels. Polym Bull. 2009;63(2):197–211.

    CAS  Article  Google Scholar 

  63. 63.

    Mesgari Abbasi M, Valizadeh H, Hamishekar H, Mohammadnejad L, Zakeri-Milani P. The Effects of Cetirizine on P-glycoprotein Expression and Function In vitro and In situ. Adv Pharm Bull. 2016;(6, 1):111–8. https://doi.org/10.15171/apb.2016.017.

  64. 64.

    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    CAS  Article  Google Scholar 

  65. 65.

    Singh B, Chauhan G, Kumar S, Chauhan N. Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydr Polym. 2007;67(2):190–200.

    CAS  Article  Google Scholar 

  66. 66.

    Mekonnen A, Tesfaye S, Christos SG, Dires K, Zenebe T, Zegeye N, et al. Evaluation of skin irritation and acute and subacute Oral toxicity of Lavandula angustifolia essential oils in rabbit and mice. Journal of toxicology. 2019;2019:1–8. https://doi.org/10.1155/2019/5979546.

    CAS  Article  Google Scholar 

  67. 67.

    Barkia I, Bouaziz HK, Boudawara TS, Aleya L, Gargouri AF, Saari N. Acute oral toxicity study on Wistar rats fed microalgal protein hydrolysates from Bellerochea malleus. Environ Sci Pollut Res. 2019;27:1–8. https://doi.org/10.1007/s11356-018-4007-6.

    CAS  Article  Google Scholar 

  68. 68.

    Hamid KMA, Hussein OA. Histological study of the possible protective effect of curcumin on diabetic cardiomyopathy in experimental diabetic rats. Egyptian Journal of Histology. 2015;38(3):452–63.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ikram Ullah Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rehman, F., Khan, I.U., Khalid, S.H. et al. Optimization, in vitro release and toxicity evaluation of novel pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum semi-interpenetrating networks. DARU J Pharm Sci (2021). https://doi.org/10.1007/s40199-021-00395-8

Download citation

Keywords

  • Sterculia gum
  • Itaconic acid
  • Acrylamide
  • Semi-IPN hydrogels
  • pH sensitive