HPLC methods for choloroquine determination in biological samples and pharmaceutical products



Review and assess pharmaceutical and clinical characteristics of chloroquine including high-performance liquid chromatography (HPLC)-based methods used to quantify the drug in pharmaceutical products and biological samples.

Evidence acquisition

A literature review was undertaken on the PubMed, Science Direct, and Scielo databases using the following keywords related to the investigated subject: ‘chloroquine’, ‘analytical methods’, and ‘HPLC’.


For more than seven decades, chloroquine has been used to treat malaria and some autoimmune diseases, such as lupus erythematosus and rheumatoid arthritis. There is growing interest in chloroquine as a therapeutic alternative in the treatment of HIV, Q fever, Whipple’s disease, fungal, Zika, Chikungunya infections, Sjogren’s syndrome, porphyria, chronic ulcerative stomatitis, polymorphic light eruption, and different types of cancer. HPLC coupled to UV detectors is the most employed method to quantify chloroquine in pharmaceutical products and biological samples. The main chromatographic conditions used to identify and quantify chloroquine from tablets and injections, degradation products, and metabolites are presented and discussed.


Research findings reported in this article may facilitate the repositioning, quality control, and biological monitoring of chloroquine in modern pharmaceutical dosage forms and treatments.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Wellems TE, Plowe CV. Chloroquine-Resistant Malaria. J Infect Dis. 2001;184:770–6 Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/322858.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Lee S-J, Silverman E, Bargman JM. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat Rev Nephrol. Nat Publ Group. 2011;7:718–29 Available from: http://www.nature.com/articles/nrneph.2011.150.

    CAS  Article  Google Scholar 

  3. 3.

    Plantone D, Koudriavtseva T. Current and future use of Chloroquine and Hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig. Springer Int Publ. 2018;38:653–71. Available from. https://doi.org/10.1007/s40261-018-0656-y.

    CAS  Article  Google Scholar 

  4. 4.

    ANVISA. ANVISA online directions for medicine use. Choloroquine tablets - Oswaldo Cruz Found. Inst. Technol. Drugs. 2019.

    Google Scholar 

  5. 5.

    Chatre C, Roubille F, Vernhet H, Jorgensen C, Pers Y-M. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf. 2018;41:919–31 Available from: http://link.springer.com/10.1007/s40264-018-0689-4.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Costedoat-Chalumeau N, Dunogué B, Leroux G, Morel N, Jallouli M, Le Guern V, et al. A critical review of the effects of Hydroxychloroquine and Chloroquine on the eye. Clin Rev Allergy Immunol. 2015;49:317–26 Available from: http://link.springer.com/10.1007/s12016-015-8469-8.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: a review. Arab J Chem. King Saud Univ. 2017;10:S1409–21. Available from. https://doi.org/10.1016/j.arabjc.2013.04.016.

    CAS  Article  Google Scholar 

  8. 8.

    Castillo-Peinado LS, Luque de Castro MD. An overview on forensic analysis devoted to analytical chemists. Talanta. Elsevier B.V. 2017;167:181–92. Available from. https://doi.org/10.1016/j.talanta.2017.01.087.

    CAS  Article  Google Scholar 

  9. 9.

    Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210 Available from: http://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0384-4.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Chloroquine. Cloroquine - DrugBank. 2020. Available from: https://www.drugbank.ca/drugs/DB00608

  11. 11.

    Chloroquine. PubChem. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chloroquine

  12. 12.

    Rendal C, Kusk KO, Trapp S. The effect of pH on the uptake and toxicity of the bivalent weak base chloroquine tested on Salix viminalis and Daphnia magna. Environ Toxicol Chem. 2011;30:354–9. Available from:. https://doi.org/10.1002/etc.391.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Osol A, Hoover JE. Remington’s pharmaceutical sciences. 15th ed. Pennsylvania: Mack Publishing Co; 1975.

    Google Scholar 

  14. 14.

    United States Pharmacopeia. 26th ed. Rockville: National Formulary/Official Monographs/Chloroquine; 2007. pp. 2631–32. Available from: https://www.drugfuture.com/Pharmacopoeia/usp35/PDF/2631-2632%20Chloroquine%20Phosphate.pdf.

  15. 15.

    Parker FS, Brandon AH. Studies of the interaction of chloroquine with hyaluronate-protein. Arch Biochem Biophys. 1968;123:222–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/0003986168901276.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Browning DJ. Pharmacology of Hydroxychloroquine and Chloroquine. Hydroxychloroquine Chloroquine Retin. New York: Springer New York; 2014. Available from: http://link.springer.com/10.1007/978-1-4939-0597-3

    Google Scholar 

  17. 17.

    Hong DD. Chloroquine Phosphate; 1976. p. 61–85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0099542808603159

    Google Scholar 

  18. 18.

    Gustafsson L, Walker O, Alvan G, Beermann B, Estevez F, Gleisner L, et al. Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol. 1983;15:471–9 Available from: http://doi.wiley.com/10.1111/j.1365-2125.1983.tb01532.x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Augustijns P, Geusens P, Verbeke N. Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42:429–33.

    CAS  PubMed  Google Scholar 

  20. 20.

    Vries PJ, Oosterhuis B, Boxtel CJ. Single-dose pharmacokinetics of chloroquine and its main metabolite in healthy volunteers. Drug Investig. 1994;8:143–9 Available from: http://link.springer.com/10.1007/BF03259430.

    Article  Google Scholar 

  21. 21.

    Gustafsson L, Lindstrom B, Grahnen A, Alvan G. Chloroquine excretion following malaria prophylaxis. Br J Clin Pharmacol. 1987;24:221–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Augustijns P, Verbeke N. Stereoselective pharmacokinetic properties of Chloroquine and De-ethyl-Chloroquine in humans. Clin Pharmacokinet. 1993;24:259–69 Available from: http://link.springer.com/10.2165/00003088-199324030-00007.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Ofori-Adjei D, Ericsson O, Lindstrom B, Sjoqvist F. Protein binding of chloroquine enantiomers and desethylchloroquine. Br J Clin Pharmacol. 1986;22:356–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of Chloroquine. Clin Pharmacokinet. 1996;31:257–74 Available from: http://link.springer.com/10.2165/00003088-199631040-00003.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Frisk-Holmberg M, Bergqvist Y, Termond E, Domeij-Nyberg B. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol. 1984;26:521–30 Available from: http://link.springer.com/10.1007/BF00542151.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Ette EI, Essien EE, Thomas WOA, Brown-Awala EA. Pharmacokinetics of Chloroquine and some of its metabolites in healthy volunteers: a single dose study. J Clin Pharmacol. 1989;29:457–62 Available from: http://doi.wiley.com/10.1002/j.1552-4604.1989.tb03362.x.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. Elsevier B.V. 2010;62:560–75. Available from. https://doi.org/10.1016/j.addr.2009.11.024.

    CAS  Article  Google Scholar 

  28. 28.

    Cusnir I, Dobing S, Jones N, Russell A. Antimalarial drugs alone may still have a role in rheumatoid arthritis. JCR J Clin Rheumatol. 2015;21:193–5 Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00124743-201506000-00004.

    PubMed  Article  Google Scholar 

  29. 29.

    Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology Springer Basel. 2015;23:231–69.

    CAS  Article  Google Scholar 

  30. 30.

    Gami N. Treatment of Sarcoidosis. Bedside Approach to Med Ther with Diagnostic Clues: Jaypee Brothers Medical Publishers (P) Ltd; 2005. p. 28. Available from: https://www.jaypeedigital.com/book/9788180615153/chapter/ch8

  31. 31.

    Al-Bari MAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70:1608–21 Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkv018.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Rynes RI. Antimalarial drugs in the treatment of rheumatological diseases. Br J Rheumatol. 1997;36:799–805 Available from: http://academic.oup.com/rheumatology/article/36/7/799/1782792/Antimalarial-drugs-in-the-treatment-of.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Tótoli EG, Salgado HRN. Besifloxacin: a critical review of its characteristics, properties, and analytical methods. Crit Rev Anal Chem. 2018;48:132–42 Available from: https://www.tandfonline.com/doi/full/10.1080/10408347.2018.1429885.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383:723–35 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673613600240.

    PubMed  Article  Google Scholar 

  35. 35.

    Castro e Souza MA, Reis NFA, de Souza Batista L, da Costa César I, Fernandes C, Pianetti GA. An easy and rapid spectrophotometric method for determination of chloroquine diphosphate in tablets. Curr Pharm Anal. 2020;16:5–11 Available from: http://www.eurekaselect.com/164159/article.

    CAS  Article  Google Scholar 

  36. 36.

    Dwivedi A, Saxena D, Singh S. HPLC and HPTLC assays for the antimalarial agents Chloroquine, Primaquine and Bulaquine. J Pharm Biomed Anal. 2003;33:851–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708503003558.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Bhalekar MR, Upadhaya PG, Madgulkar AR. Fabrication and efficacy evaluation of chloroquine nanoparticles in CFA-induced arthritic rats using TNF-α ELISA. Eur J Pharm Sci. Elsevier B.V. 2016;84:1–8. Available from. https://doi.org/10.1016/j.ejps.2016.01.009.

  38. 38.

    Kanvinde S, Chhonker YS, Ahmad R, Yu F, Sleightholm R, Tang W, et al. Pharmacokinetics and efficacy of orally administered polymeric chloroquine as macromolecular drug in the treatment of inflammatory bowel disease. Acta Biomater. 2018;82:158–70 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706118306263.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Churchill FC, Mount DL, Schwartz IK. Determination of chloroquine and its major metabolite in blood using perfluoroacylation followed by fused-silica capillary gas chromatography with nitrogen-sensitive detection. J Chromatogr. 1983;274:111–20.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Bergqvist Y, Eckerbom S. An improved gas chromatographic method for the simultaneous determination of chloroquine and two metabolites using capillary columns. J Chromatogr. 1984;306:147–53.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Imran M, Ashiq MZ, Shafi H, Usman HF, Wattoo SA, Sarwar M, et al. Hair analysis of an unusual case of Chloroquine intoxication. Leg Med. Elsevier Ireland Ltd. 2016;19:5–10 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1344622316300025.

    CAS  Google Scholar 

  42. 42.

    Aaron J-J, Fidanza J. A fluorimetric and ultraviolet spectrophotometric study of the photolysis of chloroquine on silica-gel thin layers and its analytical application. Talanta. 1982;29:383–9.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Khalil SM, Mohamed G, Zayed M, Elqudaby H. Spectrophotometric determination of chloroquine and pyrimethamine through ion-pair formation with molybdenum and thiocyanate. Microchem J. 2000;64:181–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0026265X99000272.

    CAS  Article  Google Scholar 

  44. 44.

    Magalhães GA Jr, Moura Neto E, Sombra VG, Richter AR, Abreu CMWS, Feitosa JPA, et al. Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int J Biol Macromol. Elsevier B.V. 2016;88:244–53. Available from. https://doi.org/10.1016/j.ijbiomac.2016.03.070.

    CAS  Article  Google Scholar 

  45. 45.

    Kashyap A, Kaur R, Baldi A, Jain UK, Chandra R, Madan J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int J Biol Macromol. Elsevier B.V. 2018;114:161–8. Available from. https://doi.org/10.1016/j.ijbiomac.2018.03.102.

    CAS  Article  Google Scholar 

  46. 46.

    Zayed MA, Khalil SM, El-qudaby HM. Spectrophotometric study of the reaction mechanism between DDQ Π- and iodine σ-acceptors and chloroquine and pyrimethamine drugs and their determination in pure and in dosage forms. Spectrochim Acta Part A Mol Biomol Spectrosc. 2005;62:461–5 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1386142505000259.

    CAS  Article  Google Scholar 

  47. 47.

    Usman M, Akhyar FM. Formulation of polymeric iron nano-chloroquine phosphate anti-malarial drug via polyol method. Mater Today Proc. Elsevier Ltd. 2018;5:15595–602. Available from. https://doi.org/10.1016/j.matpr.2018.04.168.

    CAS  Article  Google Scholar 

  48. 48.

    Usman M, Akhyar FM. Delayed release profile of iron nano-chloroquine phosphate and evaluation of its toxicity. Mater Today Proc. Elsevier Ltd. 2018;5:15645–52. Available from. https://doi.org/10.1016/j.matpr.2018.04.174.

    CAS  Article  Google Scholar 

  49. 49.

    Idowu OR. Specific spectrofluorimetric determination of chloroquine in blood plasma. Anal Chim Acta. 1988;206:339–44.

    CAS  Article  Google Scholar 

  50. 50.

    Dongre VG, Ghugare PD, Karmuse P, Singh D, Jadhav A, Kumar A. Identification and characterization of process related impurities in chloroquine and hydroxychloroquine by LC/IT/MS, LC/TOF/MS and NMR. J Pharm Biomed Anal. 2009;49:873–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708509000375.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Egan JA, Nugent RP, Filer CN. Tritium labelling and characterization of the cognition enhancing drug tacrine using several precursors. Appl Radiat Isot. 2002;57:837–40 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969804302001689.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Escande C, Chevalier P, Verdier F, Bourdon R. Sensitive radioimmunoassay and enzyme-linked immunosorbent assay for the simultaneous determination of chloroquine and its metabolites in biological fluids. J Pharm Sci. 1990;79:23–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915481341.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Huang Y, Pan W, Guo M, Yao S. Capillary electrophoresis with end-column electrochemiluminescence for the analysis of chloroquine phosphate and the study on its interaction with human serum albumin. J Chromatogr A. 2007;1154:373–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021967307002816.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Karpińska J. Derivative spectrophotometry - recent applications and directions of developments. Talanta. 2004;64:801–22.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Jia Z, Tian C. Quantitative determination of polyethylene glycol with modified Dragendorff reagent method. Desalination. Elsevier B.V. 2009;247:423–9. Available from. https://doi.org/10.1016/j.desal.2008.09.004.

    CAS  Article  Google Scholar 

  56. 56.

    Peter Wuelfing W, Kosuda K, Templeton AC, Harman A, Mowery MD, Reed RA. Polysorbate 80 UV/vis spectral and chromatographic characteristics – defining boundary conditions for use of the surfactant in dissolution analysis. J Pharm Biomed Anal. 2006;41:774–82 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708506000598.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Tserenjav E, Jigmeddorj V, Lygdenov BD, Bayraa U, Tsevelmaa DD. Study on physical properties of dispersed silica. IOP Conf Ser Mater Sci Eng. 2019;684:012011 Available from: https://iopscience.iop.org/article/10.1088/1757-899X/684/1/012011.

    CAS  Article  Google Scholar 

  58. 58.

    Andrade-Eiroa Á, de Armas G, Estela JM, Cerdà V. Critical approach to synchronous spectrofluorimetry. I. TrAC - Trends Anal Chem. 2010;29:885–901.

    CAS  Article  Google Scholar 

  59. 59.

    Brodie BB, Undenfriend S. The estimation of basic organic compounds in biological material; estimation by conversion to fluorescent compounds. J Biol Chem. 1947;168:319–25.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Kotecka BM, Edstein MD, Rieckmann KH. Chloroquine bioassay of plasma specimens obtained from soldiers on chloroquine plus doxycycline for malaria prophylaxis. Int J Parasitol. 1996;26:1325–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0020751996001166.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Bergqvist Y, Domeij-nyberg B. Distribution of chloroquine and its metabolite desethyl-chloroquine in human blood cells and its implication for the quantitative determination of these compounds in serum and plasma. J Chromatogr. 1983;272:137–48.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Shi C, Zhang Z, Shi J, Wang F, Luan Y. Co-delivery of docetaxel and chloroquine via PEO–PPO–PCL/TPGS micelles for overcoming multidrug resistance. Int J Pharm. Elsevier B.V. 2015;495:932–9. Available from. https://doi.org/10.1016/j.ijpharm.2015.10.009.

    CAS  Article  Google Scholar 

  63. 63.

    Ibrahim H, Bouajila J, Siri N, Rozing G, Nepveu F, Couderc F. Very small injected samples to study chloroquine and quinine in human serum using capillary-LC and native fluorescence. J Chromatogr B. 2007;850:481–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1570023206010427.

    CAS  Article  Google Scholar 

  64. 64.

    Kadir F, Eling WMC, Crommelin DJA, Zuidema J. Influence of injection volume on the release kinetics of liposomal chloroquine administered subcutaneously or intramuscularly to mice. J Control Release. 1991;17:277–84.

    CAS  Article  Google Scholar 

  65. 65.

    Tang C, Sojinu OS. Simultaneous determination of Chloroquine and its metabolite Desethyl Chloroquine in human plasma using liquid chromatography tandem mass spectrometry. Anal Lett. 2012;45:2277–89.

    CAS  Article  Google Scholar 

  66. 66.

    Gallay J, Prod’hom S, Mercier T, Bardinet C, Spaggiari D, Pothin E, et al. LC–MS/MS method for the simultaneous analysis of seven antimalarials and two active metabolites in dried blood spots for applications in field trials: analytical and clinical validation. J Pharm Biomed Anal. Elsevier B.V. 2018;154:263–77. Available from. https://doi.org/10.1016/j.jpba.2018.01.017.

    CAS  Article  Google Scholar 

  67. 67.

    Singhal P, Gaur A, Behl V, Gautam A, Varshney B, Paliwal J, et al. Sensitive and rapid liquid chromatography/tandem mass spectrometric assay for the quantification of chloroquine in dog plasma. J Chromatogr B. 2007;852:293–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1570023207000773.

    CAS  Article  Google Scholar 

  68. 68.

    Wang Z-Z, Lu H-Y, Shang D-W, Ni X-J, Zhang M, Wen Y-G. Development and validation of an HILIC–MS/MS method by one-step precipitation for chloroquine in miniature pig plasma. Bioanalysis. 2016;8:1159–71 Available from: http://www.future-science.com/doi/10.4155/bio-2015-0032.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Kaewkhao K, Chotivanich K, Winterberg M, Day NP, Tarning J, Blessborn D. High sensitivity methods to quantify chloroquine and its metabolite in human blood samples using LC-MS/MS. Bioanalysis. 2019;11:333–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Sabourian R, Mirjalili SZ, Namini N, Chavoshy F, Hajimahmoodi M, Safavi M. HPLC methods for quantifying anticancer drugs in human samples: a systematic review. Anal Biochem. Elsevier Inc. 2020;610:113891. Available from. https://doi.org/10.1016/j.ab.2020.113891.

    CAS  Article  Google Scholar 

  71. 71.

    de MN M, de Marco BA, Fiorentino FAM, Zimmermann A, Kogawa AC, Salgado HRN. Flucloxacillin: a review of characteristics, properties and analytical methods. Crit Rev Anal Chem. Taylor & Francis. 2019;49:67–77. Available from. https://doi.org/10.1080/10408347.2018.1468728.

    CAS  Article  Google Scholar 

  72. 72.

    Fernandes GF, Salgado HRN, Santos JL. A critical review of HPLC-based analytical methods for quantification of linezolid. Crit Rev Anal Chem. Taylor & Francis. 2019:1–16. Available from. https://doi.org/10.1080/10408347.2019.1605876.

  73. 73.

    Rugani K d S, Kogawa AC, Salgado HRN. Review for analytical methods for the determination of sodium Cephalothin. Crit Rev Anal Chem. Taylor & Francis. 2019;49:187–94. Available from. https://doi.org/10.1080/10408347.2018.1506697.

    CAS  Article  Google Scholar 

  74. 74.

    Ahuja S. High-pressure liquid chromatography. Compr Anal Chem. 2006:485–559 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166526X0647015X.

  75. 75.

    Kubáň P, Hauser PC. Flow injection analysis–capillary electrophoresis. Compr Anal Chem. 2008:287–307 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166526X08006119.

  76. 76.

    Abdelrahman AN, Karim EIA, Ibrahim KEE. Determination of chloroquine and its decomposition products in various brands of different dosage forms by liquid chromatography. J Pharm Biomed Anal. 1994;12:205–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/0731708594900310.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Karim EIA, Ibrahim KEE, Abdelrahman AN, Fell AF. Photodegradation studies on chloroquine phosphate by high-performance liquid chromatography. J Pharm Biomed Anal. 1994;12:667–74 Available from: https://linkinghub.elsevier.com/retrieve/pii/0731708593E0026J.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Van Pham T, Pham Nguyen P, Nguyen Duc Khanh T, Nguyen Thanh Thuy N, Nguyen Thuy Nha C, Pouplin T, et al. An HPLC method with diode array detector for the simultaneous quantification of chloroquine and desethylchloroquine in plasma and whole blood samples from Plasmodium vivax patients in Vietnam, using quinine as an internal standard. Biomed Chromatogr. 2016;30:1104–11 Available from: http://doi.wiley.com/10.1002/bmc.3657.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Cheomung A, Na-Bangchang K. HPLC with ultraviolet detection for the determination of chloroquine and desethylchloroquine in whole blood and finger-prick capillary blood dried on filter paper. J Pharm Biomed Anal. Elsevier B.V. 2011;55:1031–40. Available from. https://doi.org/10.1016/j.jpba.2011.03.001.

    CAS  Article  Google Scholar 

  80. 80.

    Samanidou VF, Evaggelopoulou EN, Papadoyannis IN. Simultaneous determination of quinine and chloroquine anti-malarial agents in pharmaceuticals and biological fluids by HPLC and fluorescence detection. J Pharm Biomed Anal. 2005;38:21–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708504006752.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Lejeune D, Souletie I, Houzé S, Le Bricon T, Le Bras J, Gourmel B, et al. Simultaneous determination of monodesethylchloroquine, chloroquine, cycloguanil and proguanil on dried blood spots by reverse-phase liquid chromatography. J Pharm Biomed Anal. 2007;43:1106–15 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708506006649.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Deng H, Liu H, Krogstad F, Krogstad D. Sensitive fluorescence HPLC assay for AQ-13, a candidate aminoquinoline antimalarial, that also detects chloroquine and N-dealkylated metabolites☆. J Chromatogr B. 2006;833:122–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S157002320500930X.

    CAS  Article  Google Scholar 

  83. 83.

    Minzi OM, Rais M, Svensson J, Gustafsson L, Ericsson Ö. High-performance liquid chromatographic method for determination of amodiaquine, chloroquine and their monodesethyl metabolites in biological samples. J Chromatogr B. 2003;783:473–80 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1570023202007274.

    CAS  Article  Google Scholar 

  84. 84.

    Zuluaga-Idárraga L, Yepes-Jiménez N, López-Córdoba C, Blair-Trujillo S. Validation of a method for the simultaneous quantification of chloroquine, desethylchloroquine and primaquine in plasma by HPLC-DAD. J Pharm Biomed Anal. Elsevier B.V. 2014;95:200–6. Available from. https://doi.org/10.1016/j.jpba.2014.03.006.

    CAS  Article  Google Scholar 

  85. 85.

    Chaulet J-F, Robet Y, Prevosto J-M, Soares O, Brazier J-L. Simultaneous determination of chloroquine and quinine in human biological fluids by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1993;613:303–10 Available from: https://linkinghub.elsevier.com/retrieve/pii/037843479380146U.

    CAS  Article  Google Scholar 

  86. 86.

    Ogunbona FA, Onyeji CO, Lawal AA, Chukwuani CM, BOLAJI OO. Liquid chromatographic analysis of chloroquine and desethylchloroquine in human plasma, saliva and urine. J Chromatogr. 1986;380:425–30.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Volin P. Simple and specific reversed-phase liquid chromatographic method with diode-array detection for simultaneous determination of serum hydroxychloroquine, chloroquine and some corticosteroids. J Chromatogr B Biomed Sci Appl. 1995;666:347–53 Available from: https://linkinghub.elsevier.com/retrieve/pii/037843479400584R.

    CAS  Article  Google Scholar 

  88. 88.

    Chaulet J-F, Grelaud G, Bellemin-Magninot P, Mounier C, Brazier J-L. Simultaneous determination of chloroquine, proguanil and their metabolites in human biological fluids by high-performance liquid chromatography. J Pharm Biomed Anal. 1994;12:111–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/0731708594800189.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Patchen LC, Mount DL, Schwartz IK, Churchill FC. Analysis of filter-paper-absorbed, finger-stick blood samples for chloroquine and its major metabolite using high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 1983;278:81–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378434700847581.

    CAS  Article  Google Scholar 

  90. 90.

    Dua VK, Kar P, Gupta N, Sharma V. Determination of chloroquine and desethylchloroquine in plasma and blood cells of Plasmodium vivax malaria cases using liquid chromatography. J Pharm Biomed Anal. 1999;21:199–205 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708599000977.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Pussard E, Verdier F, Blayo M-C. Simultaneous determination of chloroquine, amodiaquine and their metabolites in human plasma, red blood cells, whole blood and urine by column liquid chromatography. J Chromatogr B Biomed Sci Appl. 1986;374:111–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378434700832582.

    CAS  Article  Google Scholar 

  92. 92.

    Bergqvist Y, Eckerbom S. Simultaneous determination of chloroquine and its desethyl metabolite in human plasma by gas chromatography. J Chromatogr. 1981;226:91–7.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Okonkwo PO, Eta EI. Simultaneous determination of chloroquine and metronidazole in human biologial fluid by high pressure liquid chromatography. Life Sci. 1988;42:539–45.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Severini C, Menegon M. Resistance to antimalarial drugs: an endless world war against Plasmodium that we risk losing. J Glob Antimicrob Resist. Taibah University. 2015;3:58–63. Available from. https://doi.org/10.1016/j.jgar.2015.02.002.

    Article  Google Scholar 

  95. 95.

    Miranda TA, Silva P, Pianetti GA, César IC. Simultaneous quantitation of chloroquine and primaquine by UPLC-DAD and comparison with a HPLC-DAD method. Malar J. 2015;14:29 Available from: http://www.malariajournal.com/content/14/1/29.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Paci A, Caire-Maurisier A-M, Rieutord A, Brion F, Clair P. Dual-mode gradient HPLC procedure for the simultaneous determination of chloroquine and proguanil. J Pharm Biomed Anal. 2002;27:1–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708501005556.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Williams HL, Johnson DJ, Collins HH, Martin SK, Ramuz H. Simultaneous determination of chloroquine and selected calcium(II) channel blockers by high-performance liquid chromatography. Anal Chim Acta. 1990;228:155–7 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003267000804912.

    CAS  Article  Google Scholar 

  98. 98.

    Cardoso PA, Pereira DB, El-behairy MF, Ghanem A, Pianetti GA, César IC. Chirobiotic V versus Chiralpak ID for the Enantioselective chromatographic separation of Chloroquine: stability and validation study. J Chromatogr Sci. 2019;57:443–50 Available from: https://academic.oup.com/chromsci/article/57/5/443/5363946.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Coelho AS, Chagas CEP, de Pádua RM, Pianetti GA, Fernandes C. A comprehensive stability-indicating HPLC method for determination of chloroquine in active pharmaceutical ingredient and tablets: identification of oxidation impurities. J Pharm Biomed Anal. Elsevier B.V. 2017;145:248–54. Available from. https://doi.org/10.1016/j.jpba.2017.06.023.

    CAS  Article  Google Scholar 

  100. 100.

    Ducharme J, Farinotti R. Rapid and simple method to determine chloroquine and its desethylated metabolites in human microsomes by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 1997;698:243–50 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378434797002739.

    CAS  PubMed  Article  Google Scholar 

Download references


Figures were created using MindTheGraph software.


This research was sponsored by São Paulo Research Foundation (FAPESP grants #2014/22451–7), the National Council for Scientific and Technological Development (CNPq) (grant #421824/2016–6), and the Coordination for the Improvement of Higher Education Personnel (CAPES 001).

Author information



Corresponding author

Correspondence to Renata F. V. Lopez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martins, Y.A., Gonçalves, T.M. & Lopez, R.F.V. HPLC methods for choloroquine determination in biological samples and pharmaceutical products. DARU J Pharm Sci (2021). https://doi.org/10.1007/s40199-021-00391-y

Download citation


  • Physicochemical properties
  • HPLC
  • Quality control
  • Biological monitoring
  • Chloroquine metabolites