Preventive effect of Rumex crispus L. on surgically induced intra-abdominal adhesion model in rats



Rumex crispus L. (Polygonaceae), known as “Labada” in Turkey, was reported to be used for the treatment of gynecological diseases such as postpartum complications and infertility in folk medicine. Earlier studies on R. crispus have shown that leaf, fruit and root extracts have anti-inflammatory and antioxidant activities and are used for the treatment of tumors in the uterus. The hypothesis of this study is that R. crispus may generate potential anti-adhesive activity against complex factors such as inflammation, oxidation and fibrosis.


We aimed to investigate the potential anti-adhesive activity of aqueous methanol extracts of leaves, fruits and roots of R. crispus.


Abdominal adhesion model was performed in 72 female Wistar Albino rats. In the first step of the experiment, the rats were divided into six groups namely, Sham, Control, Reference and Experimental Groups (consisting of three sub-groups in which R. crispus leaf, fruit and root extracts were applied at 100 mg/kg dose). The test samples were administered once to the peritoneal cavity and the rats were sacrificied at the end of the 14th day. Root extract showed prominent activity, therefore this extract was subjected to fractionation to obtain 3 fractions (30–60–100% methanol fractions) by using vacuum-liquid chromatography. In the second stage, animals were divided into 6 groups as Sham, Control, Reference and Experimental Groups (R30, R60, R100 at 100 mg/kg dose). Adhesion scoring, tissue total antioxidant and oxidant levels, histopathological and immunohistochemical (TNF-α, IL-6 and IL-8) analyzes were performed.

Results and conclusion

Adhesion scores, inflammatory cytokines and inflammation cells decreased by the application of R. crispus root extract. The fractions also showed similar anti-inflammatory effects, but R60 was found to be more effective in prevention of intra-abdominal adhesions and uterine fibrosis. R60 fraction, possessing potential bioactivity, was investigated in terms of phenolic composition by HPLC.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Carboxymethyl cellulose


Control group


Gazi University Local Ethics Committee for Animal Experiments


Herbarium of Faculty of Pharmacy Gazi University


High performance liquid chromatography






Oxidative stress index


Photo-diode array dedector


Reference group


30% methanol fraction of the R.crispus root extract


60% methanol fraction of R.crispus root extract


100% methanol fraction of R.crispus root extract


Sham group


Standard error of the mean


Total antioxidant status


Total oxidant status


Tumour necrosis factor.


  1. 1.

    Attard JP, MacLean AR. Adhesive small bowel obstruction: epidemiology, biology and prevention. Can J Surg. 2007;50(4):291–300.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Maciver AH, McCall M, Shapiro AMJ. Intra-abdominal adhesions: cellular mechanism and strategies for prevention. Int J Surg. 2011;9:589–94.

    Article  Google Scholar 

  3. 3.

    Parsaei P, Karimi M, Asadi SY, Rafieian-Kopaei M. Bioactive components and preventive effect of green tea (Camellia sinensis) extract on post-laparotomy intra-abdominal adhesion in rats. Int J Surg. 2013;11:811–5.

    Article  Google Scholar 

  4. 4.

    Hızlı D, Hızlı F, Köşüş A, Yılmaz S, Köşüş N, Haltaş H, Dede H, Kafalı H. Effect of Hypericum perforatum on intraperitoneal adhesion formation in rats. Arch Med Sci. 2014;10(2):396–400.

    Article  Google Scholar 

  5. 5.

    Rajaei M, Najafian A, Fallahi S, Asadi I, Salimi M, Shahrzad ME, Eftekhaari TE, Golpaygani KA. Fibrinolytic effects of Matricaria chamomila in preventing peritoneal adhesions. Bull Env Pharmacol Life Sci. 2014;3(5):40–5.

    Google Scholar 

  6. 6.

    Karimi M, Asadi SY, Parsaei P, Rafieian-Kopaei M, Ghaheri H, Ezzati S. The effect of ethanol extract of rose (Rosa damascena) on intra-abdominal adhesions after laparotomy in rats. Wounds. 2016;28(5):167–74.

    PubMed  Google Scholar 

  7. 7.

    Karimi M, Parsaei P, Shafiei-Alavijeh S, Rafieian-Kopaei M, Asadi SY. Effect of silymarin alcoholic extract on surgery-induced intraperitoneal adhesion in rats. Surg Pract. 2016;20:27–33.

    Article  Google Scholar 

  8. 8.

    Kunwar PM, Bussmann RW. Ethnobotany in the Nepal Himalaya. J Ethnobiol Ethnomed. 2008;4:24–9.

    Article  Google Scholar 

  9. 9.

    Gürbüz İ, Yeşilada E, Ito S. An anti-ulcerogenic flavonoid diglucoside from Equisetum palustre L. J Ethnopharmacol. 2009;121:360–5.

    Article  Google Scholar 

  10. 10.

    Steenkamp V. Traditional herbal remedies used by South African women for gynaecological complaints. J Ethnopharmacol. 2003;86:97–108.

    CAS  Article  Google Scholar 

  11. 11.

    Wabe NT, Mohammed MA, Raju NJ. Ethnobotanical survey of medicinal plants in the Southeast Ethiopia used in traditional medicine. Spatula DD. 2011;1:153–8.

    Article  Google Scholar 

  12. 12.

    Yeşilada E, Honda G, Sezik E, Tabata M, Fujita T, Tanaka T, Takeda Y, Takaishi Y. Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. J Ethnopharmacol. 1995;46(3):133–52.

    Article  Google Scholar 

  13. 13.

    Yıldırım A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem. 2001;49:4083–9.

    Article  Google Scholar 

  14. 14.

    Coruh I, Gormez AA, Ercisli S, Sengul M. Total phenolic content, antioxidant, and antibacterial activity of Rumex crispus grown wild in Turkey. Pharm Biol. 2008;46(9):634–8.

    CAS  Article  Google Scholar 

  15. 15.

    Park JA, Choi MO. Antimicrobial activity and anti-inflammation effect to the human skin pathogens by the Rumex crispus L. root extracts. Kor J Aesthet Cosmetol. 2011;9(2):9–16.

    Google Scholar 

  16. 16.

    Shiwani S, Singh NK, Wang MH. Carbohydrase inhibition and anti-cancerous and free radical scavenging properties along with DNA and protein protection ability of methanolic root extracts of Rumex crispus. Nutr Res Pract. 2012;6(5):389–95.

    Article  Google Scholar 

  17. 17.

    Im NK, Jung YS, Choi JH, Yu MH, Jeong GS. Inhibitory effect of the leaves of Rumex crispus L. on LPS-induced nitric oxide. Production and the expression of iNOS and COX-2 in macrophages. Nat Prod Sci. 2014;20(1):51–7.

    CAS  Google Scholar 

  18. 18.

    Vasas A, Orbán-Gyapai O, Hohmann J. The genus Rumex: Review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2015;175:198–228.

    CAS  Article  Google Scholar 

  19. 19.

    Idris OA, Wintola OA, Afolayan AJ. Phytochemical and antioxidant activities of Rumex crispus L. in treatment of gastrointestinal helminths in eastern Cape Province, South Africa. Asian Pac J Trop Biomed. 2017;7(12):1071–8.

    Article  Google Scholar 

  20. 20.

    Gökbulut A. Validated RP-HPLC method for quantification of phenolic compounds in methanol extracts of aerial parts and roots of Thymus sipyleus and evaluation of antioxidant potential. Trop J Pharm Res. 2015;14(10):1871–7.

    Article  Google Scholar 

  21. 21.

    Gökbulut A. Determination of Hispidulin in the flowers of Inula viscosa (L.) Aiton using HPLC and HPTLC methods. Turk J Pharm Sci. 2016;13(2):159–66.

    Article  Google Scholar 

  22. 22.

    Yilmaz SS, Hizli D, Yilmaz E, Eryilmaz OG, Hizli F, Haltaş H. Effect of vitamin D on postoperative adhesion formation in a rat uterine horn adhesion model. J Reprod Med. 2013;58(11–12):511–6.

    CAS  PubMed  Google Scholar 

  23. 23.

    Günaydın M, Güvenç D, Yıldız L, Aksoy A, Tander B, Bıçakcı Ü, Ayyıldız HS, Sünter AT, Arıtürk E, Rızalar R, Bernay F. Comparison of substances used for prevention of intra-abdominal adhesions: an experimental study in rats. Türkiye Klinikleri J Med Sci. 2012;32(2):337–45.

    Article  Google Scholar 

  24. 24.

    Ergin İ, Demirel MA. Intra-abdominal adhesion physiology and prevention with medical treatment after gynecologic operations in cats and dogs. J Fac Vet Med Erciyes Univ. 2017;14(1):61–72.

    Google Scholar 

  25. 25.

    Kim Y. Comparative study for preventive effects of intra-abdominal adhesion using cyclo-oxygenase-2 enzyme (COX-2) inhibitor, low molecular weight heparin (LMWH), and synthetic barrier. Yonsei Med J. 2013;54(6):1491–7.

    Article  Google Scholar 

  26. 26.

    Celepli S, Kismet K, Kaptanoğlu B, Erel S, Ozer S, Celepli P, Kaygusuz G, Devrim E, Gencay O, Sorkun K, Durak I, Akkuş MA. The effect of oral honey and pollen on postoperative intraabdominal adhesions. Turk J Gastroenterol. 2011;22:65–72.

    Article  Google Scholar 

  27. 27.

    Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277–85.

    CAS  Article  Google Scholar 

  28. 28.

    Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–11.

    CAS  Article  Google Scholar 

  29. 29.

    Sahbaz A, Isik H, Aynioglu O, Gungorduk K, Dogan GB. Effect of intraabdominal administration of Allium sativum (garlic) oil on postoperative peritoneal adhesion. Eur J Obstet Gynecol. 2014;177:44–7.

    CAS  Article  Google Scholar 

  30. 30.

    Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395(2):203–30.

    CAS  Article  Google Scholar 

  31. 31.

    Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev. 2016:7432797–9.

  32. 32.

    Maksimović Z, Kovacević N, Lakusić B, Cebović T. Antioxidant activity of yellow dock (Rumex crispus L., Polygonaceae) fruit extract. Phytother Res. 2011;25(1):101–5.

    Article  Google Scholar 

  33. 33.

    Demir S, Bozkurt B, Önür MA, Kaya IG, Ünver-Somer N. Determination of antioxidant properties of Rumex crispus and Scrophularia canina subsp. bicolor. Int J Sec Metabolite. 2017;4:55–7.

    Google Scholar 

  34. 34.

    Çelik Ö, Koç E. Rumex crispus extract exerts anti-diabetic properties in streptozotocin-induced diabetes in rats. J Inst Sci Techn. 2019;9(4):1937–43.

    Article  Google Scholar 

  35. 35.

    Minh TN, Van TM, Andriana Y, Vinh LT, Hau DV, Duyen DH, Guzman-Gelani C. Antioxidant, xanthine oxidase, α-amylase and α-glucosidase inhibitory activities of bioactive compounds from Rumex crispus L. root. Molecules. 2019;24(21):E3899.

    Article  Google Scholar 

  36. 36.

    Liang HX, Dai HQ, Fu HA, Dong XP, Adebayo AH, Zhang LX, Cheng YX. Bioactive compounds from Rumex plants. Phytochem Lett. 2010;3(4):181–4.

    CAS  Article  Google Scholar 

  37. 37.

    Sahreen S, Khan MR, Khan RA. Comprehensive assessment of phenolics and antiradical potential of Rumex hastatus D. Don. roots. BMC Complement Altern Med. 2014;14(47):1–11.

    Google Scholar 

  38. 38.

    Wcislo A, Niedziałkowski P, Wnuk E, Zarzeczanska D, Ossowski T. Influence of different amino substituents in position 1 and 4 on spectroscopic and acid base properties of 9,10-anthraquinone moiety. Spectrochim Acta A Mol Biomol Spectrosc. 2013;108:82–8.

    CAS  Article  Google Scholar 

  39. 39.

    Ren H, Zhu C, Li Z, Yang W, Song E. Emodin-loaded magnesium silicate hollow Nanocarriers for anti-angiogenesis treatment through inhibiting VEGF. Int J Mol Sci. 2014;15:16936–48.

    Article  Google Scholar 

  40. 40.

    Wei G, Wu Y, Gao Q, Zhou C, Wang K, Shen C, Wang G, Wang K, Sun X, Li X. Effect of emodin on preventing postoperative intra-abdominal adhesion formation. Oxid Med Cell Longev. 2017;2017:1740317.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This study was financially supported by Scientific Research Projects Unit of Gazi University with the Project number of 02/2017–10.

Author information



Corresponding author

Correspondence to Ipek Süntar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Süntar, I., Demirel, M.A., Ceribasi, A.O. et al. Preventive effect of Rumex crispus L. on surgically induced intra-abdominal adhesion model in rats. DARU J Pharm Sci (2021).

Download citation


  • Rumex crispus
  • Polygonaceae
  • Anti-inflammatory
  • Antioxidant
  • Anti-adhesive
  • HPLC