Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety

Abstract

Background

Increasing bacterial resistance to quinolones is concerning. Hence, the development of novel quinolones by chemical modifications to overcome quinolone resistance is an attractive perspective in this context.

Objective

In this study, it is aimed to design and synthesize a novel series of functionalized fluoroquinolones using ciprofloxacin and sarafloxacin cores by hybridization of quinazolinone derivatives. This objective was tested by a comprehensive set of in vitro antibacterial assays in addition to SAR (structure–activity relationship) characterisation studies.

Methods

A nucleophilic reaction of ciprofloxacin and sarafloxacin with 2-(chloromethyl)quinazolin-4(3H)-one in the presence of NaHCO3 in dimethylformamide (DMF) was performed to obtain the desired compounds 5a-j. Novel compounds were characterised by 1H, 13C- NMR and IR spectroscopy, MS and elemental analysis. In silico pharmacokinetics prediction assays and molecular docking studies were performed to explore the binding characteristics and interactions. Antibacterial activities of the novel compounds were evaluated by Broth microdilution, well diffusion and disc diffusion assays against three gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Enterococcus faecalis) and three gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli).

Results

The compounds exhibited moderate to good activities against gram-positive bacteria and weak to moderate activities against gram-negative bacteria. Amongst all ciprofloxacin-derivatives, compound 5d was the most potent agent with high antibacterial activity against gram-positive bacteria, including MRSA and S. aureus ((minimum inhibitory concentration (MIC) = 16 nM for both), that is 60 times more potent than ciprofloxacin as parent drug. Compound 5i from sarafloxacin-derivatives was the most potent compound against MRSA and S. aureus (MIC = 0.125 μM). Well diffusion and disk diffusion assay results demonstrated confirmatory outcomes for the quantitative broth microdilution assay. Molecular docking study results were in accordance with the results of antibacterial activity assays.

Conclusion

The results of the current study demonstrated that the novel ciprofloxacin and sarafloxacin derivatives synthesized here have promising antibacterial activities. Particularly, compounds 5d and 5i have potential for wider antibacterial applications following further analysis.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Scheme. 1
Fig. 3
Fig. 4

References

  1. 1.

    Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.

    CAS  Article  Google Scholar 

  2. 2.

    McAdam AJ, Hooper DC, DeMaria A, Limbago BM, O'Brien TF, McCaughey B. Antibiotic resistance: how serious is the problem, and what can be done? Clin Chem. 2012;58:1182–6.

    CAS  Article  Google Scholar 

  3. 3.

    Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Global Infect Dis. 2019;11:36.

    Article  Google Scholar 

  4. 4.

    Chandler CI. Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun. 2019;5:1–13.

    Article  Google Scholar 

  5. 5.

    Chao Y-., Farrah K. Fluoroquinolones for the treatment of urinary tract infection: a review of clinical effectiveness, cost-effectiveness, and guidelines. 2019.

  6. 6.

    Zaffiri L, Gardner J, Toledo-Pereyra LH. History of antibiotics: from fluoroquinolones to daptomycin (part 2). J Investig Surg. 2013;26:167–79.

    Article  Google Scholar 

  7. 7.

    Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem. 2018;157:1223–48.

    CAS  Article  Google Scholar 

  8. 8.

    Pham TD, Ziora ZM, Blaskovich MA. Quinolone antibiotics. Medchemcomm. 2019;10:1719–39.

    CAS  Article  Google Scholar 

  9. 9.

    Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53:1565–74.

    CAS  Article  Google Scholar 

  10. 10.

    Andersson MI, MacGowan AP. Development of the quinolones. J Antimicrob Chemother. 2003;51:1–11.

    CAS  Article  Google Scholar 

  11. 11.

    Naeem A, Badshah SL, Muska M, Ahmad N, Khan K. The current case of quinolones: synthetic approaches and antibacterial activity. Molecules. 2016;21:268.

    Article  Google Scholar 

  12. 12.

    Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X. Quinolones: action and resistance updated. Curr Top Med Chem. 2009;9:981–98.

    CAS  Article  Google Scholar 

  13. 13.

    Anderson VE, Osheroff N. Type II topoisomerases as targets for quinolone antibacterials turning Dr. Jekyll into Mr. Hyde. Curr Pharm Des. 2001;7:337–53.

    CAS  Article  Google Scholar 

  14. 14.

    Wohlkonig A, Chan PF, Fosberry AP, Homes P, Huang J, Kranz M, et al. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol. 2010;17:1152–3.

    CAS  Article  Google Scholar 

  15. 15.

    Mitscher LA. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev. 2005;105:559–92.

    CAS  Article  Google Scholar 

  16. 16.

    Segatore B, Setacci D, Perilli M, Franceschini N, Marchetti F, Amicosante G. Bactericidal activity of levofloxacin and ciprofloxacin on clinical isolates of different phenotypes of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2000;13:223–6.

    CAS  Article  Google Scholar 

  17. 17.

    Sriram D, Yogeeswari P, Basha JS, Radha DR, Nagaraja V. Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives. Bioorg Med Chem. 2005;13:5774–8.

    CAS  Article  Google Scholar 

  18. 18.

    Aldred KJ, McPherson SA, Wang P, Kerns RJ, Graves DE, Turnbough CL Jr, et al. Drug interactions with bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. Biochemistry. 2012;51:370–81.

    CAS  Article  Google Scholar 

  19. 19.

    Aldred KJ, McPherson SA, Turnbough CL Jr, Kerns RJ, Osheroff N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res. 2013;41:4628–39.

    CAS  Article  Google Scholar 

  20. 20.

    Anderson VE, Zaniewski RP, Kaczmarek FS, Gootz TD, Osheroff N. Action of quinolones against Staphylococcus aureus topoisomerase IV: basis for DNA cleavage enhancement. Biochemistry. 2000;39:2726–32.

    CAS  Article  Google Scholar 

  21. 21.

    Barnard FM, Maxwell A. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser83and Asp87. Antimicrob Agents Chemother. 2001;45:1994–2000.

    CAS  Article  Google Scholar 

  22. 22.

    Peterson LR. Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. Clin Infect Dis. 2001;33:S180–6.

    CAS  Article  Google Scholar 

  23. 23.

    Asadipour A, Moshafi MH, Khosravani L, Moghimi S, Amou E, Firoozpour L, et al. N-substituted piperazinyl sarafloxacin derivatives: synthesis and in vitro antibacterial evaluation. DARU J Pharm Sci. 2018;26:199–207.

    CAS  Article  Google Scholar 

  24. 24.

    Foroumadi A, Emami S, Mehni M, Moshafi MH, Shafiee A. Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg Med Chem Lett. 2005;15:4536–9.

    CAS  Article  Google Scholar 

  25. 25.

    Gatadi S, Lakshmi TV, Nanduri S. 4 (3H)-Quinazolinone derivatives: promising antibacterial drug leads. Eur J Med Chem. 2019;170:157–72.

    CAS  Article  Google Scholar 

  26. 26.

    Cao S-L, Feng Y-P, Jiang Y-Y, Liu S-Y, Ding G-Y, Li R-T. Synthesis and in vitro antitumor activity of 4 (3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg Med Chem Lett. 2005;15:1915–7.

    CAS  Article  Google Scholar 

  27. 27.

    Giri RS, Thaker HM, Giordano T, Williams J, Rogers D, Sudersanam V, et al. Design, synthesis and characterization of novel 2-(2, 4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-κB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur J Med Chem. 2009;44:2184–9.

    CAS  Article  Google Scholar 

  28. 28.

    Jatav V, Mishra P, Kashaw S, Stables J. CNS depressant and anticonvulsant activities of some novel 3-[5-substituted 1, 3, 4-thiadiazole-2-yl]-2-styryl quinazoline-4 (3H)-ones. Eur J Med Chem. 2008;43:1945–54.

    CAS  Article  Google Scholar 

  29. 29.

    Xia Y, Yang Z-Y, Hour M-J, Kuo S-C, Xia P, Bastow KF, et al. Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg Med Chem Lett. 2001;11:1193–6.

    CAS  Article  Google Scholar 

  30. 30.

    Jessy E, Sambanthan AT, Alex J, Sridevi C, Srinivasan K. Synthesis and biological evaluation of some novel quinazolones. Indian J Pharm Sci. 2007;69:476.

    CAS  Article  Google Scholar 

  31. 31.

    Alagarsamy V, Thangathiruppathy A, Rajasekaran S, Vijaykumar S, Revathi R, Anburaj J, et al. Pharmacological evaluation of 2-substituted (1, 3, 4) thiadiazolo quinazolines. Indian J Pharm Sci. 2006;68:108.

    CAS  Article  Google Scholar 

  32. 32.

    Reddy MM, Sivaramakrishna A. Remarkably flexible quinazolinones—synthesis and biological applications. J Heterocyclic Chem. 2020;57:942–54.

    CAS  Article  Google Scholar 

  33. 33.

    Kerns RJ, Rybak MJ, Kaatz GW, Vaka F, Cha R, Grucz RG, et al. Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus. Bioorg Med Chem Lett. 2003;13:2109–12.

    CAS  Article  Google Scholar 

  34. 34.

    Wang S, Jia X-D, Liu M-L, Lu Y, Guo H-Y. Synthesis, antimycobacterial and antibacterial activity of ciprofloxacin derivatives containing a N-substituted benzyl moiety. Bioorg Med Chem Lett. 2012;22:5971–5.

    CAS  Article  Google Scholar 

  35. 35.

    Akhtar R, Yousaf M, Naqvi SAR, Irfan M, Zahoor AF, Hussain AI, et al. Synthesis of ciprofloxacin-based compounds: a review. Synth Commun. 2016;46:1849–79.

    CAS  Article  Google Scholar 

  36. 36.

    Bauer A. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966;45:149–58.

    Article  Google Scholar 

  37. 37.

    Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.

    Article  Google Scholar 

  38. 38.

    O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G. Open babel: an open chemical toolbox. J Cheminformatics. 2011;1:33.

    Article  Google Scholar 

  39. 39.

    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    CAS  Article  Google Scholar 

  40. 40.

    Khan SA, Saleem K, Khan Z. Synthesis, structure elucidation and antibacterial evaluation of new steroidal-5-en-7-thiazoloquinoxaline derivatives. Eur J Med Chem. 2008;43:2257–61.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Research Council of Tehran University of Medical Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Foroumadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2072 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norouzbahari, M., Salarinejad, S., Güran, M. et al. Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety. DARU J Pharm Sci (2020). https://doi.org/10.1007/s40199-020-00373-6

Download citation

Keywords

  • Fluoroquinolones (FQs)
  • 2-methylquinazolin-4(3H)-one
  • Antibacterial activity
  • Nucleophilic reaction
  • Antibiotic resistance