Long-chain polyunsaturated omega-3 fatty acids reduce multiple myeloma exosome-mediated suppression of NK cell cytotoxicity

Abstract

Background

Despite the advances in the treatment of multiple myeloma (MM), complete remission is usually challenging. The interactions between tumor and host cells, in which exosomes (EXs) play critical roles, have been shown to be among the major deteriorative tumor-promoting factors herein. Therefore, any endeavor to beneficially target these EX-mediated interactions could be of high importance.

Objectives

a) To investigate the effects of myeloma EXs on natural killer (NK) cell functions. b) To check whether treatment of myeloma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), two polyunsaturated omega-3 fatty acids with known anti-cancer effects, can modify myeloma EXs in terms of their effects on natural killer functions.

Methods

L363 cells were treated with either EPA or DHA or left untreated and the released EXs (designated as E-EX, D-EX and C-EX, respectively) were used to treat NK cells for functional studies.

Results

Myeloma EXs (C-EXs) significantly reduced NK cytotoxicity against K562 cells (P ≤ 0.05), while the cytotoxicity suppression was significantly lower (P ≤ 0.05) in the (E-EX)- and (D-EX)-treated NK cells compared to the (C-EX)-treated cells. The expression of the activating NK receptor NKG2D and NK degranulation, after treatment with the EXs, were both altered following the same pattern. However, C-EXs could increase IFN-γ production in NK cells (P < 0.01), which was not significantly affected by EPA/DHA treatment. This indicates a dual effect of myeloma EXs on NK cells functions.

Conclusion

Our observations showed that myeloma EXs have both suppressive and stimulatory effects on different NK functions. Treatment of myeloma cells with EPA/DHA can reduce the suppressive effects of myeloma EXs while maintaining their stimulatory effects. These findings, together with the previous findings on the anti-cancer effects of EPA/DHA, provide stronger evidence for the repositioning of the currently existing EPA/DHA supplements to be used in the treatment of MM as an adjuvant treatment.

Graphical abstract

EXs released from L363 (myeloma) cells in their steady state increase IFN-γ production of NK cells, while reduce their cytotoxicity against the K562 cell line (right blue trace). EXs from L363 cells pre-treated with either EPA or DHA are weaker stimulators of IFN-γ production. These EXs also increase NK cytotoxicity and NKG2D expression (left brown trace) compared to the EXs obtained from untreated L363 cells. Based on these findings, myeloma EXs have both suppressive and stimulatory effects on different NK functions depending on the properties of their cells of origin, which can be exploited in the treatment of myeloma.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Canella A, et al. The potential diagnostic power of extracellular vesicle analysis for multiple myeloma. Expert Rev Mol Diagn. 2016;16(3):277–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Iaccino E, et al. Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes. Mol Cancer. 2017;16.

  3. 3.

    Di Marzo L, et al. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60698–711.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Zhang L, Pan L, Xiang B, Zhu H, Wu Y, Chen M, et al. Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma. Oncotarget. 2016;7(21):30876–91.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Soley L, Falank C, Reagan MR. MicroRNA transfer between bone marrow adipose and multiple myeloma cells. Current Osteoporosis Reports. 2017;15(3):162–70.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124(25):3748–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Moloudizargari M, Asghari MH, Abdollahi M. Modifying exosome release in cancer therapy: how can it help? Pharmacol Res. 2018;134:246–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    De Veirman K, et al. Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Lett. 2016;377(1):17–24.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Yanez-Mo, M., et al., (2015) Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles. 4.

  12. 12.

    Kosaka N, Yoshioka Y, Tominaga N, Hagiwara K, Katsuda T, Ochiya T. Dark side of the exosome: the role of the exosome in cancer metastasis and targeting the exosome as a strategy for cancer therapy. Future Oncol. 2014;10(4):671–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Maybruck BT, Pfannenstiel LW, Diaz-Montero M, Gastman BR. Tumor-derived exosomes induce CD8(+) T cell suppressors. J Immunother Cancer. 2017;5(1):65.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010;5(7):e11469.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Raimondi L, de Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6(15):13772–89.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wang JH, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 2016;239(2):162–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutr. 2012;142(3):592S–9S.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Ghaedi E, Rezaei, N, Mahmoudi, M (2019) Nutrition, Immunity, and Cancer, in Nutrition and Immunity. Springer. p. 209–281.

  20. 20.

    Golzari MH, Javanbakht MH, Ghaedi E, Mohammadi H, Djalali M. Effect of Eicosapentaenoic acid (EPA) supplementation on cardiovascular markers in patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Syndr. 2018;12(3):411–5.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Betiati Dda S, de Oliveira PF, Camargo Cde Q, Nunes EA, Trindade EB. Effects of omega-3 fatty acids on regulatory T cells in hematologic neoplasms. Rev Bras Hematol Hemoter. 2013;35(2):119–25.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gillis RC, Daley BJ, Enderson BL, Karlstad MD. Eicosapentaenoic acid and gamma-linolenic acid induce apoptosis in HL-60 cells. J Surg Res. 2002;107(1):145–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Moloudizargari M, et al. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review. Oncotarget. 2018;9(14):11858–75.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Fan YY, McMurray DN, Ly LH, Chapkin RS. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr. 2003;133(6):1913–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Stulnig TM, Huber J, Leitinger N, Imre EM, Angelisova P, Nowotny P, et al. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem. 2001;276(40):37335–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Abdi J, Garssen J, Faber J, Redegeld FA. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. J Nutr Biochem. 2014;25(12):1254–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Mortaz E et al., (2019) EPA and DHA have selective toxicity for PBMCs from multiple myeloma patients in a partly caspase-dependent manner. Clin Nutr.

  28. 28.

    Thery C et al., (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3: p. Unit 3 22.

  29. 29.

    Good Z, Borges L, Vivanco Gonzalez N, Sahaf B, Samusik N, Tibshirani R, et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat Biotechnol. 2019;37(3):259–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Lee HR et al. (2017) Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep. 7.

  31. 31.

    Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8(1):23–30.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. 32.

    Lorenzo-Herrero S, Sordo-Bahamonde C, Gonzalez S, López-Soto A. CD107a degranulation assay to evaluate immune cell antitumor activity. Methods Mol Biol. 2019;1884:119–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Strack R. Improved exosome detection. Nat Methods. 2019;16(4):286–6.

  34. 34.

    Du YM, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res. 2018;363(1):114–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Cheng N et al. (2019) Recent advances in biosensors for detecting Cancer-derived Exosomes. Trends Biotechnol.

  36. 36.

    Morcos M et al. (2019) Perforin inhibition blocks NK-mediated in vitro killing of human lung epithelial cells in COPD. Am J Respir Crit Care Med. 199.

  37. 37.

    Arendt BK, Walters DK, Wu X, Tschumper RC, Huddleston PM, Henderson KJ, et al. Increased expression of extracellular matrix metalloproteinase inducer (CD147) in multiple myeloma: role in regulation of myeloma cell proliferation. Leukemia. 2012;26(10):2286–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. Multiple myeloma cell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget. 2014;5(14):5686–99.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Vulpis E, Cecere F, Molfetta R, Soriani A, Fionda C, Peruzzi G, et al. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-kB axis. Oncoimmunology. 2017;6(3):e1279372.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer. 2015;14:133.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Anel A et al. (2019) Role of Exosomes in the Regulation of T-cell Mediated Immune Responses and in Autoimmune Disease. Cells. 8(2).

  42. 42.

    LeBleu VS, Kalluri R. Exosomes exercise inhibition of anti-tumor immunity during chemotherapy. Immunity. 2019;50(3):547–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Offen D, Perets N, Guo S, Betzer O, Popovtzer R, Ben-Shaul S, et al. Exosomes loaded with Pten Sirna leads to functional recovery after complete transection of the spinal cord by specifically targeting the damaged area. Cytotherapy. 2019;21(5):E7–8.

    Article  Google Scholar 

  44. 44.

    Zheng M, Huang M, Ma X, Chen H, Gao X. Harnessing Exosomes for the development of brain drug delivery systems. Bioconjug Chem. 2019;30(4):994–1005.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Wang J, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 2016;239(2):162–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Canella A, Harshman SW, Radomska HS, Freitas MA, Pichiorri F. The potential diagnostic power of extracellular vesicle analysis for multiple myeloma. Expert Rev Mol Diagn. 2016;16(3):277–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia. 2017;31(6):1259–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Moloudizargari M et al. (2019) The emerging role of exosomes in multiple myeloma. Blood Rev: p. 100595.

  50. 50.

    Moloudizargari M, Asghari MH, Mortaz E. Inhibiting exosomal MIC-A and MIC-B shedding of cancer cells to overcome immune escape: new insight of approved drugs. Daru. 2019;27:879–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Gronberg A, et al. IFN-gamma treatment of K562 cells inhibits natural killer cell triggering and decreases the susceptibility to lysis by cytoplasmic granules from large granular lymphocytes. J Immunol. 1988;140(12):4397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Phuyal S, et al. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J. 2014;281(9):2214–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Sierich H and Eiermann T (2013) Comparing individual NK cell activity in vitro. Curr Protoc Immunol. Chapter 14: p. Unit 14 32.

  54. 54.

    Gillgrass A, Ashkar A. Stimulating natural killer cells to protect against cancer: recent developments. Expert Rev Clin Immunol. 2011;7(3):367–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Ferrari de Andrade, L., et al., Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science, 2018. 359(6383): p. 1537–1542.

  56. 56.

    Labani-Motlagh A, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37(4):5455–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    DeClercq V, d'Eon B, McLeod RS. Fatty acids increase adiponectin secretion through both classical and exosome pathways. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids. 2015;1851(9):1123–33.

    CAS  Article  Google Scholar 

  58. 58.

    Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, et al. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer. 2005;117(3):340–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Plebanek MP et al. (2015) Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake. Sci Rep. 5.

  61. 61.

    Cvetkovic Z, et al. Abnormal fatty acid distribution of the serum phospholipids of patients with non-Hodgkin lymphoma. Ann Hematol. 2010;89(8):775–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Bayram I, Erbey F, Celik N, Nelson JL, Tanyeli A. The use of a protein and energy dense Eicosapentaenoic acid containing supplement for malignancy-related weight loss in children. Pediatr Blood Cancer. 2009;52(5):571–4.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Galli M, Chatterjee M, Grasso M, Specchia G, Magen H, Einsele H, et al. Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy. Haematologica. 2018;103(10):e469–72.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This article has been extracted from the thesis written by Mr. Milad Moloudizargari in School of Medicine Shahid Beheshti University of Medical Sciences (Registration No: 260). Ethics committee approval ID: IR.SBMU.MSP.REC.1397.578.

Funding

E. Mortaz was supported by National Institute for Medical Research Development (NIMAD) grant number 977582.

Author information

Affiliations

Authors

Contributions

MM carried out all the experiments and prepared the manuscript. FR edited the manuscript. MHA helped in preparing the paper and did the statistical analysis. NM consulted MM during the work. EM supervised and conceived the whole study.

Corresponding author

Correspondence to Esmaeil Mortaz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moloudizargari, M., Redegeld, F., Asghari, M.H. et al. Long-chain polyunsaturated omega-3 fatty acids reduce multiple myeloma exosome-mediated suppression of NK cell cytotoxicity. DARU J Pharm Sci (2020). https://doi.org/10.1007/s40199-020-00372-7

Download citation

Keywords

  • Extracellular vesicle
  • Cancer
  • Tumor
  • Natural killer cell
  • Exosome
  • Omega-3