Skip to main content

Advertisement

Log in

Recent trends and advances in microbe-based drug delivery systems

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Since more than a decade, pharmaceutical researchers endeavor to develop an effective, safe and target-specific drug delivery system to potentiate the therapeutic actions and reduce the side effects. The conventional drug delivery systems (DDSs) show the improvement in the lifestyle of the patients suffering from non-communicable diseases, autoimmune diseases but sometimes, drug resistance developed during the treatment is a major concern for clinicians to find an alternative and more advanced transport systems. Advancements in drug delivery facilitate the development of active carrier for targeted action with improved pharmacokinetic behavior. This review article focuses on microbe-based drug delivery systems to provide safe, non-toxic, site-specific targeted action with lesser side effects. Pharmaceutical researchers play a vital part in microbe-based drug delivery systems as a therapeutic agent and carrier. The properties of microorganisms like self-propulsion, in-situ production of therapeutics, penetration into the tumor cells, increase in immunity, etc. are of interest for development of highly effective delivery carrier. Lactococcus lactis is therapeutically helpful in Inflammatory Bowel Disease (IBD) and is under investigation of phase I clinical trial. Moreover, bacteria, anti-cancer oncolytic viruses, viral vectors (gene therapy) and viral immunotherapy are the attractive areas of biotechnological research. Virus acts as a distinctive candidate for imaging of tumor and accumulation of active in tumor.

Classification of microbe-based drug delivery system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang WW, Lee C. Salmonella as an innovative therapeutic antitumor agent. J Mol Sci. 2014;15:14546–4.

    CAS  Google Scholar 

  2. Bhaskar M, Sanib B. Virosomes: a novel strategy for drug Deliveryand targeting. Bio-Pharm International Supplements. 2011;24:12–3.

    Google Scholar 

  3. Kumar A, Kumar A.V., Why Chitosan? From properties to perspective ofmucosal drug delivery, J Biological Macromolecules. 2016; (S0141–8130) (16) 30465–2.

  4. Yin L. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer. J Control Release. 2017;S0168-3659(17):31079–9.

  5. Nauts H, The beneficial effects of bacterial infections on host resistance to cancer: End result in 449 cases, Cancer research institute monograph no. 8, New York, USA; 1980; (2).

  6. Barbe S, Mellaert V, Anne J. The use of clostridial spores for cancer treatment. J Appl Microbiol. 2006;101(3):571–8.

    CAS  PubMed  Google Scholar 

  7. Richardson MA, Ramirez T, Russell NC, Moye LA. Coley toxins immunotherapy: a retrospective review. AlternTher Health Med. 1999;5(3):42.

    CAS  Google Scholar 

  8. Zacharski LR, Sukhatme VP. Coley’s toxin revisited: immunotherapy or plasminogen activator therapy of cancer. J Thromb Haemost. 2005;3(3):424–7.

    CAS  PubMed  Google Scholar 

  9. Gravekamp C, Paterson Y. Harneeing Listeria monocytogenes to target tumors. Cancer Biol Ther. 2010;9:257–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Forbes NS. Perspectives. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10:785–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoffman HR, Zhao M. Methods for the development of tumor targeting bacteria. Expert Opinion. J Drug Discov. 2014;(9):741–50.

  12. Minton NP. Clostridia in cancer therapy. Nat Re Microbiol. 2003;1:237–42.

    CAS  Google Scholar 

  13. Carswell EP, Old LJ, Kassel RL, Green S. Williamson, an endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci. 1975;72:3666–70.

    CAS  PubMed  Google Scholar 

  14. Dang LH, Bettegowda C, Huso DL, Kinzler K, Vogelstein WB. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci. 2001;98(26):15155–60.

    CAS  PubMed  Google Scholar 

  15. Gericke D, Engelbart K. Oncolysis by clostridia. II. Experiments on a tumor spectrum, 1208. Cancer Res. 1964;24:217–21.

    CAS  PubMed  Google Scholar 

  16. Thiele EH, Arison RN, Boxer G. E., Oncolysis by clostridia. IV. Effect of nonpathogenic 1210 clostridial spores. Cancer Res. 1964;24:234–8.

    CAS  PubMed  Google Scholar 

  17. Bone RC. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA. 1992;268:3452–5.

    CAS  PubMed  Google Scholar 

  18. Dinarello CA, Gelfand JA, Wolff SM. Anticytokine strategies in the treatment of the 1214 systemic inflammatory response syndrome. JAMA. 1993;269:1829–35.

    CAS  PubMed  Google Scholar 

  19. Jr Somerville JE, Cassiano LBB, Cunningham MD, Darveau RP. A novel 1216 Escherichia coli lipid a mutant that produces an anti-inflammatory lipopolysaccharide, 1217 J. Clin Investig. 1996;97:359–65.

    Google Scholar 

  20. Khan S.A., Everest, P. Servos S, Foxwell N, Zahringer U, et al. 1219 Dougan, I.G. Charles, D.J. Maskell, A lethal role for lipid, A in Salmonella infections, Mol.1220 Microbiol. 1998; 29, 571–579.

  21. Low KB, Ittensohn M, Le T, Platt J, Sodi S, AmossMAsh O, et al. Lipid a mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol. 1999;17:37–41.

    CAS  PubMed  Google Scholar 

  22. Foligne B, Dessein R, Marceau M, Poiret S, Chamaillard M, Pot B, et al. 1226 prevention and treatment of colitis with Lactococcus lactis secreting the immunomodula-1227 tory Yersinia LcrV protein. Gastroenterology. 2007;133:862–74.

    CAS  PubMed  Google Scholar 

  23. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. 1229 treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289:1352–5.

    CAS  PubMed  Google Scholar 

  24. Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes. 2015;64(5):1794–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X.et al. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N, Antimicrob. Agents Chemother. 50. 2006; 3250–3259.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazumder B., Bhattacharya S., Virosomes: a novel strategy for drug delivery and targeting. The science and business of biopharmaceuticals, Biochem Pharmacol. 2001; Jan.02, 24.

  27. A.W. Paton, Morona R and Paton J.C, Bioengineered microbes in disease therapy, Trends Mol Med. 2012; (18) 7, 417–425.

    CAS  PubMed  Google Scholar 

  28. Goldstein R.A., Soyer O. S., Evolution of taxis responses in virtual bacteria: non-adaptive dynamics, PLoS Comput Biol 2008; 23; 4 (5).

    PubMed  PubMed Central  Google Scholar 

  29. Taylor BL, Zhulin IB, Johnson MS. Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol. 1999;53:103–28.

    CAS  PubMed  Google Scholar 

  30. Taniguchi S., Shimatani Y., Fujimori M., Tumor-targeting therapy using gene-engineered anaerobic-nonpathogenic Bifidobacterium longum, Methods Mol Biol 2016; 1409,1375 49–60.

  31. Seavey MM, Pan ZK, Maciag PC, Wallecha A, Rivera S, Paterson Y, et al. A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T -cell responses and impact the growth and spread of Her-2/neu-positive breast tumors. Clin Cancer Res. 2009;15:924–32.

    CAS  PubMed  Google Scholar 

  32. Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, et al. Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer. 2006;95:1212–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Du Z.Q. Wang J.Y., A novel lumazine synthase molecule from Brucell a significantly promotes the immune-stimulation effects of antigenic protein, Genet. Mol. Res. 14. 2015; 13084–13095.

    CAS  PubMed  Google Scholar 

  34. Friend DR, Chang GW. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem. 1984;27:261–6.

    CAS  PubMed  Google Scholar 

  35. Fu GF, Li X, Hou YY, Fan YR, Liu WH, Xu GX. Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther. 2005;12:133–40.

    CAS  PubMed  Google Scholar 

  36. Yazawa K, et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat. 2001;66:165–70.

    CAS  PubMed  Google Scholar 

  37. Lee, B., P. Thiyagarajan, R.E. Winans, X. Li, Z. Niu, Q. Wang, Effect of interfacial interaction on the cross-sectional morphology of tobacco mosaic virus using GISAXS, Langmuir 23. 2007; 11157–11163.

    CAS  PubMed  Google Scholar 

  38. Xiao X. The antitumor effect of suicide gene therapy using Bifidobacterium infantise-mediated herpes simplex virus thymidine kinase/ganciclovir in a nude mice model of renal cell carcinoma, Urology 84. 2014; 84(4), 982.

    Google Scholar 

  39. Jiang L. Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment. Biol Chem. 2013;394:1333–42.

    CAS  PubMed  Google Scholar 

  40. Yin X. Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene therapy induces both extrinsic and intrinsic apoptosis in a rat model of bladder cancer. Cancer Gene Ther. 2013;20:77–81.

    CAS  PubMed  Google Scholar 

  41. Yin X, Yu B, Tang Z, He B, Xiao X. Bifidobacterium infantis-mediated HSV-TK\ GCV suicide gene therapy induces both extrinsic and intrinsic apoptosis in a rat model of bladder cancer. Cancer Gene Ther. 2013;20:77–81.

    CAS  PubMed  Google Scholar 

  42. Okuda K, Wada Y, Shimada M. Recent developments in preclinical DNA vaccination. Vaccines (Basel). 2014;2:89–106.

    Google Scholar 

  43. Gentschev, I., G. Dietrich, Spreng S., Kolb-Maurer, Brinkmann V, Grode L, Hess J, Kaufmann S.H.E, Goebel E, Recombinant attenuated bacteria for the delivery of subunit vaccines, Vaccine 19. 2001; 2621–2628.

    CAS  PubMed  Google Scholar 

  44. Radford KJ, Higgins DE, Pasquini S, Cheadle EJ, Carta LA. A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: Application to cancer immunotherapy. Gene Ther. 2002;9:1455–63.

    CAS  PubMed  Google Scholar 

  45. Storz G., Hengge, R., Bacterial Stress Responses, 2nd ed. American Society for Microbiology Press. 2010.

  46. Faivre D. Magnetotactic bacteria and magnetosomes. Chem Rev. 2008;108:4875–98.

    CAS  PubMed  Google Scholar 

  47. Felfoul, O., Martel S., Assessment of navigation control strategy for magnetotactic bacteria in microchannel: Toward targeting solid tumors, Biomed Microdevices 15. 2013; 1015–1024.

    CAS  PubMed  Google Scholar 

  48. Martel S. Bacterial microsystems and microrobots. Biomed Microdevices. 2012;14:1033–45.

    PubMed  Google Scholar 

  49. Chen CY, Song T. Construction of a microrobot system using magnetotactic bacteria for the separation of staphylococcus aureus. Biomed Microdevices. 2014;16:761–70.

    CAS  PubMed  Google Scholar 

  50. Brown J. M., Wilson W.R., Exploiting tumor hypoxia in cancer treatment, Natl Rev 1620. 2004; Cancer 4, 437–447.

    CAS  PubMed  Google Scholar 

  51. Zhang X, Lin Y, Gillies RJ. Tumor pH and its measurement. J Nucl Med. 2010;51:1167–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kluger M, Rothenburg B, Fever and reduced iron: their interaction as a host defense response to bacterial infection, Science 203. 1979; 374–376.

    CAS  PubMed  Google Scholar 

  53. Zhuan, G.J., Wright Carlsen R., Sitti M., pH-taxis of biohybrid microsystems, Sci. Report. 2015; 5, 11403.

  54. Patyar S, Joshi R, Byrav DS, Das P. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci. 2010;17(1):21.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Carey R, Holland J, Whang H, Neter E, Bryant B. Clostridial oncolysis in man, Eur. J. Cancer. 1967; 3:37, 46.

    Google Scholar 

  56. Bermudes D, Zheng L, King IC. Live bacteria as anticancer agents and tumor-selective protein delivery vectors. CurrOpin Drug DiscovDevel. 2002;5(2):194–9.

    CAS  Google Scholar 

  57. Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 1955;15:473–8.

    CAS  PubMed  Google Scholar 

  58. Liu S, Minton N, Giaccia A, Brown J. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 2002;9(4):291–6.

    CAS  PubMed  Google Scholar 

  59. King I, Itterson M, Bermudes D. Tumor-targeted Salmonella typhimurium overexpressing cytosine deaminase: a novel, tumor-selective therapy. Methods Mol Biol. 2009;542:649–59.

    CAS  PubMed  Google Scholar 

  60. Avogadri F, Martinoli C, Petrovska L, Chiodoni C, Transidico P, Bronte V, et al. Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res. 2005;65(9):3920–7.

    CAS  PubMed  Google Scholar 

  61. Sabzehali F, Azimi H, Goudarzi M. Bacteria as a vehicle in cancer therapy and drug delivery. J of Paramedical Sciences. 2017; (8), 1 52–59.

  62. Frankel AE, Rossi P, Kuzel TM, Foss F. Diphtheria fusion protein therapy of chemo resistant malignancies. Curr Cancer Drug Targets. 2002;(1):19–36.

    CAS  PubMed  Google Scholar 

  63. Falnes PO, Ariansen S, Sandvig K, Olsnes S. Requirement for prolonged action in the cytosol for optimal protein synthesis inhibition by diphtheria toxin. J Biol Chem. 2005;275(6):4363–8.

    Google Scholar 

  64. Pastan I., Targeted therapy of cancer with recombinant Immunotoxins Bio chimicaet Biphysica Acta (BBA)-Rev Cancer. 1997; 1333(2) C1-C6.

  65. Kokai JF, Mcclane BA. Determination of functional regions of Clostridium perfringens enterotoxin through deletion analysis. Clin Infect Dis. 1997;25:S165–7.

    Google Scholar 

  66. Kokai JF, Benton K, Wieckowski EU, Mcclane BA. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun. 1999;67:5634–41.

    Google Scholar 

  67. Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system: production and applications. Bioengineered Bugs. 2010;1:326–36.

    PubMed  PubMed Central  Google Scholar 

  68. Tabrizi C.A. et al, Bacterial ghosts — biological particles as delivery systems for antigens, nucleic acids and drugs, Curr. Opin. Biotechnol. 2004; 15, 530–537, (2004).

    CAS  PubMed  Google Scholar 

  69. Huter V, Szostak MP, Prethaler GJ. Bacterial ghosts as drug carrier and targeting vehicles. J Control Release. 1999;61:51–63.

    CAS  PubMed  Google Scholar 

  70. Paukner S, Kohl G, Jalava K. Lubitz W, sealed bacterial ghosts—novel targeting vehicles for advanced drug delivery of water-soluble substances. J Drug Target. 2003;11:151–61.

    CAS  PubMed  Google Scholar 

  71. Paukner S, Kohl G. Lubitz W, bacterial ghosts as novel advanced drug delivery systems: anti proliferative activity of loaded doxorubicin in human Caco-2 cells. J Control Release. 2004;94:63–74.

    CAS  PubMed  Google Scholar 

  72. Stein E. et al, In vitro and in vivo uptake study of Escherichia coli Nissle 1917 bacterial ghosts: cell-based delivery system to target ocular surface diseases, Invest. Ophthalmol. 2013; Vis. Sci. 54 6326–6333.

    CAS  Google Scholar 

  73. Mengesha, In: Clostridia: Molecular Biology in the Post-genomic Era. Bruggemann H, Gottschalk G, editor. Caister Academic Press; Clostridia in Anti-tumor Therapy. 2009.

  74. Theys J, Landuyt W, Nuyts S, van Mellaert L, van Oosterom A, Lambin P, et al. Specific targeting of cytosine deaminasto solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 2001;8:294–7.

    CAS  PubMed  Google Scholar 

  75. Rabanel JM, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release. 2014;185:71–87.

    CAS  PubMed  Google Scholar 

  76. Fujimori M. AmanoJ. Taniguchi S The genus Bifidobacterium for cancer gene therapy CurrOpin Drug Discov Devel. 2003;5:200–3.

    Google Scholar 

  77. Carlsen R.W., Sitti M., Bio-hybrid cell-based actuators for microsystems, Small 10. 2012; 1250 3831–3851.

    CAS  PubMed  Google Scholar 

  78. Kim D, Liu A. Diller E, Sitti M, chemotactic steering of bacteria propelled microbeads, 1717 biomed. Microdevices. 2012;14:1009–17.

    CAS  Google Scholar 

  79. Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K. Bacteria-mediateddelivery of nanoparticles and cargo into cells. Nat Nanotechnol. 2007;2:441–9.

    CAS  PubMed  Google Scholar 

  80. Kolate A. BaradiaD, PatilS, VhoraI., PEG –a versatile conjugating ligand for drugs and drug delivery systems. J Control Release. 2014;192:67–81.

    CAS  PubMed  Google Scholar 

  81. Xu J, et al. Combination of immunotherapy with anaerobic bacteria for immunogene therapy of solid tumours. Gene TherMol Biol. 2009;13:36–52.

    CAS  Google Scholar 

  82. Wood LM, Guirnalda PD, Seavey MM, Paterson Y. Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors. Immunol Res. 2008;(42):233–45.

    PubMed  PubMed Central  Google Scholar 

  83. Kelly RE. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–9.

    CAS  PubMed  Google Scholar 

  84. Moore AE. The destructive effect of the virus of Russian Far East encephalitis on the transplantable mouse sarcoma 180. Cancer. 1949;2(3):525–34.

    CAS  PubMed  Google Scholar 

  85. Clinical virotherapy: four historically significant clinical trials.

  86. Simona D, Strēle L, Proboka G, Auziņš J, Pēteris A, Björn J, et al. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421–6.

  87. Viruses: The new cancer hunters. Isra Cast (News article). March 1, 2016.

  88. Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo- controlled phase III study. Clin Cancer Res. 2010;16(22):5539–47.

    CAS  PubMed  Google Scholar 

  89. Bayer ME, Blumberg BS, Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia, Down's syndrome and hepatitis. Nature. 1968;218(5146):1057–9.

    CAS  PubMed  Google Scholar 

  90. Petry H, Goldmann C, Ast O. Lüke W, "the use of virus-like particles for gene transfer". Curr Opin Mol Ther. 2003;5(5):524–8.

    CAS  PubMed  Google Scholar 

  91. Galaway FA, Stockley PG. MS2 virus like particles: A robust, semisynthetic targeted drug delivery platform. Mol Pharm. 2013;10:59–68.

    CAS  PubMed  Google Scholar 

  92. Kovacs EW, et al. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug Chem. 2007;18:1140–7.

    CAS  PubMed  Google Scholar 

  93. Akahata W., Yang Z. Y, Andersen H, et al. "a VL vaccine for epidemic chikungunya virus protects non-human primates against infection". Nat Med 2010; 16 (3), 334–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, et al. Lessons learned from successful human vaccines: delineating key epitopes by dissecting the capsid proteins. Human Vacc Immunother. 2015;11(5):1277–92.

    Google Scholar 

  95. Shende P, Waghchaure M. Combined vaccines for prophylaxis of infectious conditions. Artif Cells Nanomed Biotechnol. 2019;47(1):696–705.

    CAS  PubMed  Google Scholar 

  96. Almeida JD, Brand CM, Edwards DC. T.D. Heath, Formation of virosomes from influenza subunits and liposomes. Lancet. 1975;2:899–901.

    CAS  PubMed  Google Scholar 

  97. Bagai S, Puri A. Hemagglutinin- neuraminidase enhances F protein-mediated membrane fusion of reconstituted Sendai virus envelopes with cells. J Virol. 1993;67:3312–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Uchida T, Kim J. Reconstitution of lipid vesicles associated with HVJ (Sendai virus) spikes. Purification and some properties of vesicles containing nontoxic fragment a of diphtheria toxin. J Cell Biol. 1979;80:10–20.

    CAS  PubMed  Google Scholar 

  99. Vainstein A, Hershkovitz M, Israel S, Rabin S, Loyter A. A new method for reconstitution of highly fusogenic Sendai virus envelopes. Biochim Biophys Acta. 1984;773:181–8.

    CAS  PubMed  Google Scholar 

  100. Helenius A, Sarvas M, Simons K. Asymmetric and symmetric membrane reconstitution by detergent elimination. Studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacillus licheniformis Eur J Biochem. 1981;116:27–35.

    CAS  PubMed  Google Scholar 

  101. Helenius A, Fries E, Kartenbeck J. Reconstitution of Semliki Forest virus membrane. J Cell Biol. 1977;75:866–80.

    CAS  PubMed  Google Scholar 

  102. Metsikkö K, Simons K. Reconstitution of the fusogenicactivity of vesicular stomatitis virus. EMBO J. 1986;5:3429–35.

    PubMed  PubMed Central  Google Scholar 

  103. Petri WA, Wagner RR. Reconstitution into liposomes of the glycoprotein of vesicular stomatitis virus by detergent dialysis. J Biol Chem. 1979;(254):4313–6.

  104. Scheule RK. Novel preparation of functional Sindbis virosomes. Biochem. 1986;25:4223–32.

    CAS  Google Scholar 

  105. Cusi MG. Applications of influenza virosomes as a delivery system. Human Vaccines. 2006;2:1–7.

    CAS  PubMed  Google Scholar 

  106. DaemenTde Mare A, Bungener L, de Jonge J, Huckriede A, Wilschut J. Virosomes for antigen and DNA delivery. Adv Drug Deliv Rev. 2005;57:451–63.

    PubMed  Google Scholar 

  107. Felnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol. 2004;15:518–29.

    CAS  PubMed  Google Scholar 

  108. Zhao S, Penman M, Hoffman RM. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A. 2005;102:755–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosenberg GA. Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32:1139–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Van Sorge N. M, Doran K.S., Defense at the border: the blood–brain barrier versus bacterial foreigners, Future Microbiol 7, 2012; 383–394.

  111. Zwagerman N.T., Friedlander R. M, Monaco E.A., Intratumoral Clostridium novyi as a potential treatment for solid necrotic brain tumors, Neurosurgery 75, 2014; N17–N18.

    PubMed  Google Scholar 

  112. Guo S.G., Yan W.W, Mc Donough S.P., Lin N.F., et al The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model, Vaccine 33. 2015; 1586–1595.

    CAS  PubMed  Google Scholar 

  113. Ahmed B, Loos M, Vanrompay D, Cox E. Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine. 2014;32:3909–16.

    CAS  PubMed  Google Scholar 

  114. Wei P, et al. Oral delivery of Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to combat ulcerative colitis. J Med Microbiol. 2016;65(2):160–8.

    CAS  PubMed  Google Scholar 

  115. Takei S, et al Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV- NS3-specific systemic immune response in mice, Vaccine 32, 2014; 3066–3074.

    CAS  PubMed  Google Scholar 

  116. Yu ZJ, Huang Z, Sao CW, Huang YJ, Zhang F, Yang J, et al. Bifidobacterium as an oral delivery carrier of interleukin-12 for the treatment of Coxsackie virus B3-induced myocarditis in the Balb/c mice. Int Immunopharmacol. 2012;12:125–30.

    CAS  PubMed  Google Scholar 

  117. Ning JF, Zhu W, Xu JP, Zheng CY, Meng XL. Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium. Vaccine. 2009;27:1127–35.

    CAS  PubMed  Google Scholar 

  118. Chen G. et al, Oral delivery of tumor-targeting Salmonella exhibits promising therapeutic efficacy and low toxicity, Cancer Sci. 2009; 100, 2437–2443, (2009).

    CAS  PubMed  Google Scholar 

  119. Castagliuolo I, et al Engineered E. coli delivers therapeutic genes to the colonic mucosa, Gene Ther. 2005; 12, 1070–1078.

    CAS  PubMed  Google Scholar 

  120. Grillot-Courvalin C, et al Fruehauf, Development of a therapeutic RNAi delivery system using nonpathogenic bacteria expressing inv and hly: trans kingdom RNA interference (tkRNAi), Hum. Gene Ther. 2009; 20, 670.

  121. Ivory K. et al, Oral delivery of Lactobacillus casei Shirota modifies allergen-induced immune responses in allergic rhinitis, Clin. Exp. Allergy 38. 2008; 1282–1289.

    CAS  Google Scholar 

  122. Lee CH. Engineering bacteria toward tumor targeting for cancer treatment: current state and perspectives. Appl Microbiol Biotechnol. 2012;93:517–23.

    CAS  PubMed  Google Scholar 

  123. Liu SC, Minton NP, Giaccia AJ, Brown JM. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 2002;9:291–6.

    CAS  PubMed  Google Scholar 

  124. Ganai Set al, In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis, Cancer Gene Ther. 2011; 18, 457–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Loeffler M. Et al reed, inhibition of tumor growth using Salmonella expressing Fas ligand. J Natl Cancer Inst. 2008;100:1113–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yam,Met al Hoffman, monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer, J Surg Res 2010; 164, 248–255.

    PubMed  Google Scholar 

  127. Ciabattini, A. et al, Primary activation of antigen- specific naive CD4 (+) and CD8 (+) T cells following intranasal vaccination with recombinant bacteria, Infect. Immun. 76. 2008; 5817–5825.

  128. Palffy F. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 2006;13:101–5.

    CAS  PubMed  Google Scholar 

  129. Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 1955;15:473–8.

    CAS  PubMed  Google Scholar 

  130. Hosseinidoust Z. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106:27–44.

    CAS  PubMed  Google Scholar 

  131. Guidance for Industry: Considerations for developmental toxicity studies for preventive and therapeutic vaccines for infectious disease indications. 2006.

  132. ICH guideline on Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use. 2011.

  133. Husain S.R., Han J, Au P, Shannon K, Puri K. R, Gene therapy for cancer:regulatory considerations for approval. Cancer Gene Ther. 2015; (22) 554–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Guidance for Industry: Design and Analysis of Shedding Studies for Virus or Bacteria-based Gene Therapy and Oncolytic Products. 2015; (73).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Pravin Shende is involved in constructing, planning and organizing the manuscript.

Ms. Vasavi Basarkar is involved in literature search and writing of manuscript.

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shende, P., Basarkar, V. Recent trends and advances in microbe-based drug delivery systems. DARU J Pharm Sci 27, 799–809 (2019). https://doi.org/10.1007/s40199-019-00291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00291-2

Keywords

Navigation