Skip to main content

Advertisement

Log in

In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Backround

Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for their ability to differentiate into blood cells, and also for bone marrow diseases therapy. Boron nitride nanotubes and curcumin are potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is important to evaluate their possible effects on different cell lines.

Objectives

In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompatibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant properties.

Methods

The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and V79 cells were evaluated by MTT assay and Comet assay, respectively.

Results and conclusion

Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells, HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration - dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by further analysis for potential targeted drug development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu W, Deng Y, Liu Y, Gong W, Deng W. Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol. 2013;27(1):17–27.

    Article  Google Scholar 

  2. Mori H, Hara M. Cultured stem cells as tools for toxicological assays. J Biosci Bioeng. 2013;116(6):647–52.

    Article  CAS  Google Scholar 

  3. Kang K-S, Trosko JE. Stem cells in toxicology: fundamental biology and practical considerations. Toxicol Sci. 2010;120(S1):S269–S89.

    PubMed  Google Scholar 

  4. Edwards RG. Stem cells today: B1. Bone marrow stem cells. Reprod BioMed Online. 2004;9(5):541–83.

    Article  CAS  Google Scholar 

  5. Parmar K, D’Andrea AD. Stressed out: endogenous aldehydes damage hematopoietic stem cells. Cell Stem Cell. 2012;11(5):583–4.

    Article  CAS  Google Scholar 

  6. Xu A, Hei TK. Genotoxicity of nanoparticles. In: Lieberman HB, Friedman MY, Lu J, editors. Center for radiological research. New York: Colombia University; 2006. p. 47–9.

    Google Scholar 

  7. Azqueta A, Dusinska M. The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet. 2015;6. https://doi.org/10.3389/fgene.2015.00239.

  8. Ciofani G, Raffa V, Menciassi A, Dario P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J Nanosci Nanotechnol. 2008;8(12):6223–31.

    Article  CAS  Google Scholar 

  9. Zhi C, Bando Y, Tang C, Golberg D. Boron nitride nanotubes. Materials Science and Engineering: R: Reports. 2010;70(3):92–111.

    Article  Google Scholar 

  10. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today. 2009;4(1):8–10.

    Article  CAS  Google Scholar 

  11. Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin. 2012;33(6):823–31.

    Article  CAS  Google Scholar 

  12. Yin H, Zhang H, Liu B. Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer. Acta Biochim Biophys Sin. 2013;45(8):634–40.

    Article  CAS  Google Scholar 

  13. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  Google Scholar 

  14. Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods. 1990;131(2):165–72.

    Article  CAS  Google Scholar 

  15. Ferreira TH, Silva P, Santos R, Sousa E. A novel synthesis route to produce boron nitride nanotubes for bioapplications. Journal of biomaterials and nanobiotechnology. 2011;2:426–34.

    Article  CAS  Google Scholar 

  16. Bacanli M, Anlar HG, Başaran AA, Başaran N. Assessment of cytotoxicity profiles of different phytochemicals: comparison of neutral red and MTT assays in different cells in different time periods. Turkish Journal of Pharmaceutical Sciences. 2017;14(2):95–107.

    Article  CAS  Google Scholar 

  17. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  Google Scholar 

  18. Hartmann A, Kiskinis E, Fjällman A, Suter W. Influence of cytotoxicity and compound precipitation on test results in the alkaline comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2001;497(1):199–212.

    Article  CAS  Google Scholar 

  19. Singla P, Goel N, Singhal S. Boron nitride nanomaterials with different morphologies: synthesis, characterization and efficient application in dye adsorption. Ceram Int. 2015;41(9):10565–77.

    Article  CAS  Google Scholar 

  20. Adegoke O, Park EY. Gold nanoparticle-quantum dot fluorescent nanohybrid: application for localized surface plasmon resonance-induced molecular beacon ultrasensitive DNA detection. Nanoscale Res Lett. 2016;11:523. https://doi.org/10.1186/s11671-016-1748-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soares DCF, Ferreira TH, de Aguiar Ferreira C, Cardoso VN, de Sousa EMB. Boron nitride nanotubes radiolabeled with 99mTc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int J Pharm. 2012;423:489–95. https://doi.org/10.1016/j.ijpharm.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  22. Yanbakan S. Hücresel tedavi ürünlerinin klinik kullanım alanları. J Clin Exp Investig. 2015;6(2):202–8.

    Google Scholar 

  23. Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol. 2011;85(2):79–117.

    Article  CAS  Google Scholar 

  24. Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10(5):494–501.

    Article  CAS  Google Scholar 

  25. Klaassen CD, Amdur MO. Casarett and Doull's toxicology: the basic science of poisons. 7th ed. London: McGraw-Hill; 2008.

    Google Scholar 

  26. Horvath L, Magrez A, Golberg D, Zhi C, Bando Y, Smajda R, et al. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano. 2011;5(5):3800–10.

    Article  CAS  Google Scholar 

  27. Akram M, Uddin S, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, et al. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55(2):65–70.

    Google Scholar 

  28. Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z, et al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym. 2012;90(1):16–22.

    Article  CAS  Google Scholar 

  29. Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci. 2012;370(1):58–66.

    Article  CAS  Google Scholar 

  30. Niskanen J, Zhang I, Xue Y, Golberg D, Maysinger D, Winnik FM. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine. 2016;11(5):447–63.

    Article  CAS  Google Scholar 

  31. Ciofani G, Raffa V, Yu J, Chen Y, Obata Y, Takeoka S, et al. Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr Nanosci. 2009;5(1):33–8.

    Article  CAS  Google Scholar 

  32. Li X, Zhi C, Hanagata N, Yamaguchi M, Bando Y, Golberg D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem Commun. 2013;49(66):7337–9.

    Article  CAS  Google Scholar 

  33. Raffa V, Ciofani G, Cuschieri A. Enhanced low voltage cell electropermeabilization by boron nitride nanotubes. Nanotechnology. 2009;20:075104. https://doi.org/10.1088/0957-4484/20/7/075104.

    Article  CAS  PubMed  Google Scholar 

  34. Yinghuai Z, Cheng Yan K, Maguire J, Hosmane N. Recent developments in boron neutron capture therapy driven by nanotechnology. Boron Science: New Technologies and Applications Volume. 2007;1:147–163.

  35. Ferreira TH, Marino A, Rocca A, Liakos I, Nitti S, Athanassiou A, et al. Folate-grafted boron nitride nanotubes: possible exploitation in cancer therapy. Int J Pharm. 2015;481(1–2):56–63.

    Article  CAS  Google Scholar 

  36. Rowe RI, Bouzan C, Nabili S, Eckhert CD. The response of trout and zebrafish embryos to low and high boron concentrations is U-shaped. Biol Trace Elem Res. 1998;66(1–3):261–70.

    Article  CAS  Google Scholar 

  37. Ferreira T, Hollanda L, Lancellotti M, de Sousa EB. Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J Biomed Mater Res A. 2015;103(6):2176–85.

    Article  CAS  Google Scholar 

  38. Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J Mech Behav Biomed Mater. 2011;4(1):44–56.

    Article  CAS  Google Scholar 

  39. Del Turco S, Ciofani G, Cappello V, Gemmi M, Cervelli T, Saponaro C, et al. Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B: Biointerfaces. 2013;111:142–9.

    Article  Google Scholar 

  40. Danti S, Ciofani G, Moscato S, D’Alessandro D, Ciabatti E, Nesti C, et al. Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology. 2013;24:465102. https://doi.org/10.1088/0957-4484/24/46/465102.

    Article  CAS  PubMed  Google Scholar 

  41. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Folate functionalized boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their use as boron carriers in clinical boron neutron capture therapy. Nanoscale Res Lett. 2009;4(2):113–21.

    Article  CAS  Google Scholar 

  42. Rocca A, Marino A, Del Turco S, Cappello V, Parlanti P, Pellegrino M, et al. Pectin-coated boron nitride nanotubes: in vitro cyto−/immune-compatibility on RAW 264.7 macrophages. BBA General Subjects. 2016;1860(4):775–84.

    Article  CAS  Google Scholar 

  43. Li X, Wang X, Jiang X, Yamaguchi M, Ito A, Bando Y, et al. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2016;104(2):323–9.

    Article  CAS  Google Scholar 

  44. Singh B, Kaur G, Singh P, Singh K, Kumar B, Vij A, et al. Nanostructured boron nitride with high water Dispersibility for boron neutron capture therapy. Sci Rep. 2016;6. https://doi.org/10.1038/srep35535.

  45. Abernethy DJ, Kleymenova EV, Rose J, Recio L, Faiola B. Human CD34+ hematopoietic progenitor cells are sensitive targets for toxicity induced by 1, 4-benzoquinone. Toxicol Sci. 2004;79(1):82–9.

    Article  CAS  Google Scholar 

  46. Ciofani G, Del Turco S, Genchi GG, D’Alessandro D, Basta G, Mattoli V. Transferrin-conjugated boron nitride nanotubes: protein grafting, characterization, and interaction with human endothelial cells. Int J Pharm. 2012;436(1–2):444–53.

    Article  CAS  Google Scholar 

  47. Fernandez-Yague MA, Larrañaga A, Gladkovskaya O, Stanley A, Tadayyon G, Guo Y, et al. Effects of polydopamine functionalization on boron nitride nanotube dispersion and cytocompatibility. Bioconjug Chem. 2015;26(10):2025–37.

    Article  CAS  Google Scholar 

  48. Khalil HE, Mohamed ME, Morsy MA, Kandeel M. Flavonoid and phenolic compounds from Carissa macrocarpa: molecular docking and cytotoxicity studies. Pharmacogn Mag. 2018;14(57):304–10.

    Article  Google Scholar 

  49. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr Res. 2010;30(9):650–9.

    Article  CAS  Google Scholar 

  50. Kumar D, Basu S, Parija L, Rout D, Manna S, Dandapat J, et al. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed Pharmacother. 2016;81:31–7.

    Article  CAS  Google Scholar 

  51. Nair KL, Thulasidasan AKT, Deepa G, Anto RJ, Kumar GV. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int J Pharm. 2012;425(1–2):44–52.

    Article  CAS  Google Scholar 

  52. Chen Z-G, Zou J, Liu G, Li F, Wang Y, Wang L, et al. Novel boron nitride hollow nanoribbons. ACS Nano. 2008;2(10):2183–91.

    Article  CAS  Google Scholar 

  53. Ferreira TH, Soares DCF, Moreira LMC, da Silva PRO, dos Santos RG, de Sousa EMB. Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies. Mater Sci Eng C. 2013;33(8):4616–23.

    Article  CAS  Google Scholar 

  54. Emanet M, Şen Ö, Çobandede Z, Çulha M. Interaction of carbohydrate modified boron nitride nanotubes with living cells. Colloids Surf B: Biointerfaces. 2015;134:440–6.

    Article  CAS  Google Scholar 

  55. Cao J, Jia L, Zhou H-M, Liu Y, Zhong L-F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci. 2006;91(2):476–83.

    Article  CAS  Google Scholar 

  56. Cao J, Liu Y, Jia L, Jiang L-P, Geng C-Y, Yao X-F, et al. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. J Agric Food Chem. 2008;56(24):12059–63.

    Article  CAS  Google Scholar 

  57. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radic Biol Med. 2008;45(10):1403–12.

    Article  CAS  Google Scholar 

  58. Cao J, Jiang L-P, Liu Y, Yang G, Yao X-F, Zhong L-F. Curcumin-induced genotoxicity and antigenotoxicity in HepG2 cells. Toxicon. 2007;49(8):1219–22.

    Article  CAS  Google Scholar 

  59. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by Hacettepe University Scientific Research Projects Coordination Unit under Grant number THD-2015-8174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülkü Ündeğer Bucurgat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çal, T., Bucurgat, Ü.Ü. In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. DARU J Pharm Sci 27, 203–218 (2019). https://doi.org/10.1007/s40199-019-00263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00263-6

Keywords

Navigation