Skip to main content

Advertisement

Log in

Adsorption and in vitro release study of curcumin form polyethyleneglycol functionalized multi walled carbon nanotube: kinetic and isotherm study

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rathaur P, Raja W, Ramteke PW, John SA. Turmeric: the golden spice of life. Int J Pharm Sci Res. 2012;3:1987.

    Google Scholar 

  2. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C. 2017;77:1316–26.

    Article  CAS  Google Scholar 

  3. Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. DARU J Pharm Sci. 2015;23:33.

    Article  CAS  Google Scholar 

  4. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365–83.

    Article  CAS  PubMed  Google Scholar 

  5. Chougala MB, Bhaskar JJ, Rajan MGR, Salimath PV. Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin Nutr. 2012;31:749–55.

    Article  CAS  PubMed  Google Scholar 

  6. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.

    Article  CAS  PubMed  Google Scholar 

  7. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: biological actions and medicinal applications. Curr Sci. 2004;87:44–53.

    CAS  Google Scholar 

  8. Cha T-G, Pan J, Chen H, Salgado J, Li X, Mao C, et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat Nanotechnol. 2014;9:39–43.

    Article  CAS  PubMed  Google Scholar 

  9. Jafari A, Ghorannevis Z, Ghoranneviss M, Karimi S. Nitrogen ion bombardment of multilayer graphene films grown on cu foil by LPCVD. Int J Mater Res. 2016;107:177–83.

    Article  CAS  Google Scholar 

  10. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2:85–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji S, Liu C, Zhang B, Yang F, Xu J, Long J, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta - Rev Cancer. 2010;1806:29–35.

    Article  CAS  Google Scholar 

  12. Hadavifar M, Bahramifar N, Younesi H, Li Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J. 2014;237:217–28.

    Article  CAS  Google Scholar 

  13. Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32:144–51.

    Article  CAS  PubMed  Google Scholar 

  14. Klingeler R, Hampel S, Büchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperth Taylor & Francis. 2008;24:496–505.

    Article  CAS  Google Scholar 

  15. Mahajan S, Patharkar A, Kuche K, Maheshwari R, Deb PK, Kalia K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm. 2018;548:540–58.

    Article  CAS  PubMed  Google Scholar 

  16. Shuit SH, Ng EP, Tan SH. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production. J Taiwan Inst Chem Eng E. 2015;52:100–8.

    Article  CAS  Google Scholar 

  17. Madani SY, Naderi N, Dissanayake O, Tan A. Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011;6:2963–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo Cancer therapy. Angew Chemie Int Ed. 2009;48:7668–72.

    Article  CAS  Google Scholar 

  19. Lu Y-J, Wei K-C, Ma C-CM, Yang S-Y, Chen J-P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surfaces B Biointerfaces. 2012;89:1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Meena S, Choudhary S. Effects of functionalization of carbon nanotubes on its spin transport properties. Mater Chem Phys. 2018;217:175–81.

    Article  CAS  Google Scholar 

  21. Wang Z, Zhao J, Song L, Mashayekhi H, Chefetz B, Xing B. Adsorption and desorption of Phenanthrene on carbon nanotubes in simulated gastrointestinal fluids. Environ Sci Technol. 2011;45:6018–24.

    Article  CAS  PubMed  Google Scholar 

  22. Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX. Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci. 2008;321:30–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Yang S-T, Wang Y, Liu Y, Wang H. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surfaces B Biointerfaces. 2012;97:62–9.

    Article  CAS  PubMed  Google Scholar 

  24. Oleszczuk P, Pan B, Xing B. Adsorption and desorption of Oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol. 2009;43:9167–73.

    Article  CAS  PubMed  Google Scholar 

  25. Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep. 2016;6:26508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tofighy MA, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater. 2011;185:140–7.

    Article  CAS  PubMed  Google Scholar 

  27. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.

    Article  CAS  PubMed  Google Scholar 

  28. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75.

    Article  CAS  PubMed  Google Scholar 

  29. Bhattacharya K, Sacchetti C, Costa PM, Sommertune J, Brandner BD, Magrini A. Nitric oxide dependent degradation of polyethylene glycol-modified single-walled carbon nanotubes: implications for intra-articular delivery. Adv Healthc Mater. 2018;7:1700916.

    Article  CAS  Google Scholar 

  30. Dolatimehr F, Karimi-Sari H, Rezaee-Zavareh MS, Alavian SM, Behnava B, Gholami-Fesharaki M, et al. Combination of sofosbuvir, pegylated-interferon and ribavirin for treatment of hepatitis C virus genotype 1 infection: a systematic review and meta-analysis. DARU J Pharm Sci. 2017;25:11.

    Article  CAS  Google Scholar 

  31. Novaes LC de L, Jozala AF, Mazzola PG, Júnior AP, Novaes LC de L, Jozala AF, et al. The influence of pH, polyethylene glycol and polyacrylic acid on the stability of stem bromelain. Brazilian J Pharm Sci. 2014;50:371–80.

    Article  CAS  Google Scholar 

  32. Davarpanah F, Yazdi AK, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. DARU J Pharm Sci. 2018;26:57–64.

    Article  Google Scholar 

  33. Sarier N, Onder E. Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams. Thermochim Acta. 2010;510:113–21.

    Article  CAS  Google Scholar 

  34. AM K, Rashid NA. Study of stability and Dispersibility of oxidized multiwall carbon nanotube and characterization with analytical methods for bioapplication. J Chem Health Ris. 2011;1:17–22.

    Google Scholar 

  35. Balaji RA, Raghunathan S, Revathy R. Levofloxacin: formulation and in-vitro evaluation of alginate and chitosan nanospheres. Egypt Pharm J. 2015;14:30–5.

    Article  Google Scholar 

  36. Shi X, Zheng Y, Wang G, Lin Q, Fan J. pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 2014;4:47056–65.

    Article  CAS  Google Scholar 

  37. Zhou Y, Pervin F, Lewis L, Jeelani S. Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater Sci Eng A. 2008;475:157–65.

    Article  CAS  Google Scholar 

  38. Su F, Lu C, Hu S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surfaces A Physicochem Eng Asp. 2010;353:83–91.

    Article  CAS  Google Scholar 

  39. Branca C, Frusteri F, Magazù V, Mangione A. Characterization of carbon nanotubes by TEM and infrared spectroscopy. J Phys Chem B. 2004;108:3469–73.

    Article  CAS  Google Scholar 

  40. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater. 2011;186:921–31.

    Article  CAS  PubMed  Google Scholar 

  41. Viseras MT, Aguzzi C, Cerezo P, Viseras C, Valenzuela C. Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite. Microporous Mesoporous Mater. 2008;108:112–6.

    Article  CAS  Google Scholar 

  42. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6:555.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mohammadi Nodeh MK, Gabris MA, Rashidi Nodeh H, Esmaeili Bidhendi M. Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium–titanium nanocomposite. Environ Sci Pollut Res. 2018;25:16864–74.

    Article  CAS  Google Scholar 

  44. Rashidi Nodeh H, Sereshti H. Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC Adv. 2016;6:89953–65.

    Article  CAS  Google Scholar 

  45. Dada A. Olalekan, Olatunya AM, Dada. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified Rice husk. IOSR J Appl Chem. 3:2278–5736.

  46. Dehghani MH, Sanaei D, Ali I, Bhatnagar A. Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq. 2016;215:671–9.

    Article  CAS  Google Scholar 

  47. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10.

    Article  CAS  Google Scholar 

  48. Luo S, Xu X, Zhou G, Liu C, Tang Y, Liu Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(Π) from wastewater. J Hazard Mater. 2014;274:145–55.

    Article  CAS  PubMed  Google Scholar 

  49. Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186:458–65.

    Article  CAS  PubMed  Google Scholar 

  50. Nodeh HR, Sereshti H, Afsharian EZ, Nouri N. Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite. J Environ Manag. 2017;197:265–74.

    Article  CAS  Google Scholar 

  51. Khan TA, Chaudhry SA, Ali I. Equilibrium uptake, isotherm and kinetic studies of cd (II) adsorption onto iron oxide activated red mud from aqueous solution. J Mol Liq. 2015;202:165–75.

    Article  CAS  Google Scholar 

  52. Alizadeh Eslami P, Kamboh MA, Rashidi Nodeh H, Wan Ibrahim WA. Equilibrium and kinetic study of novel methyltrimethoxysilane magnetic titanium dioxide nanocomposite for methylene blue adsorption from aqueous media. Appl Organomet Chem. 2018;32:e4331.

    Article  CAS  Google Scholar 

  53. Gabris MA, Jume BH, Rezaali M, Shahabuddin S, Rashidi Nodeh H, Saidur R. Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb (II) ions from aqueous media: equilibrium and kinetic studies. Environ Sci Pollut Res. 2018;25:27122–32.

    Article  CAS  Google Scholar 

  54. Ngo HH, Guo W, Zhang J, Liang S, Ton-That C, Zhang X. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour Technol. 2015;182:353–63.

    Article  CAS  PubMed  Google Scholar 

  55. Wang W, Li M, Zeng Q. Thermodynamics of Cr (VI) adsorption on strong alkaline anion exchange fiber. Trans Nonferrous Met Soc China. 2012;22:2831–9.

    Article  CAS  Google Scholar 

  56. Zawawi NA, Majid ZA, Rashid NAA. Adsorption and desorption of curcumin by poly (vinyl) alcohol-multiwalled carbon nanotubes (PVA-MWCNT). Colloid Polym Sci. 2017;295:1925–36.

    Article  CAS  Google Scholar 

  57. Yang P, Quan Z, Li C, Kang X, Lian H, Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials. 2008;29:4341–7.

    Article  CAS  PubMed  Google Scholar 

  58. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci. 2012;368:540–6.

    Article  CAS  PubMed  Google Scholar 

  59. Wang H, Chen J, Xu C, Shi L, Tayier M, Zhou J, et al. Cancer nanomedicines stabilized by π-π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations. Theranostics. 2017;7:3638–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors would like to thanks Universiti Teknologi Malaysia (UTM) for the facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Rashidi Nodeh.

Ethics declarations

Conflict of interest

“Authors declare that there is no conflict of interest”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koupaei Malek, S., Gabris, M.A., Hadi Jume, B. et al. Adsorption and in vitro release study of curcumin form polyethyleneglycol functionalized multi walled carbon nanotube: kinetic and isotherm study. DARU J Pharm Sci 27, 9–20 (2019). https://doi.org/10.1007/s40199-018-0232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-018-0232-2

Keywords

Navigation