Skip to main content
Log in

Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

The PI3K/AKT/FOXO signaling pathway plays an important role in the survival, proliferation and apoptosis of tumor cells. The aim of the present study was to explore whether metformin could affect insulin-promoting cell growth by regulation of this pathway.

Material and methods

Anaplastic thyroid cancer cells were treated with 0–60 mM metformin for 24, 48 and 72 h. Cell viability, morphology, apoptosis and migration were investigated by MTT assay, microscopy observation, AnexinV-PI and the wound healing assay, respectively. Expression levels of PI3K, AKT and FOXO1 were detected by RT-qPCR, and proteins phosphorylated levels were determined by ELISA.

Results

Metformin decreased cell viability and migration in a significant time-and dose-dependent manner, and induced apoptosis and morphological changes in the cells. RT-qPCR results showed that expression levels of PI3K, AKT and FOXO1 was inhibited by metformin (P < 0.05). However, there was no significant change in the expression level of AKT following metformin treatment for C643 cell line (P > 0.05). ELISA results showed that metformin treatment had no significant effects on the phosphorylated levels of PI3K, AKT and FOXO1 (P > 0.05).

Conclusuion

The downregulation of FOXO1 was intensified by metformin, but no increase in cell viability was observed following FOXO1 downregulation by metformin. However, the exact molecular mechanism of metformin on inhibition of the PI3K/AKT pathway and subsequent decrease in cell viability remains unclear and further studies are required for its clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nozhat Z, Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Molecular diagnosis & therapy. 2016;20(1):13–26.

    Article  CAS  Google Scholar 

  2. Nozhat Z, Hedayati M, Pourhassan H. Signaling pathways in medullary thyroid carcinoma: therapeutic implications. International Journal of Endocrine Oncology. 2016;3(4):299–312.

    Article  CAS  Google Scholar 

  3. Cornett WR, Sharma AK, Day TA, Richardson MS, Hoda RS, van Heerden JA, et al. Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep. 2007;9(2):152–8.

    Article  PubMed  Google Scholar 

  4. AIN KB. Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 1998;8(8):715–26.

    Article  CAS  PubMed  Google Scholar 

  5. Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. The Journal of Clinical Endocrinology & Metabolism. 2012;97(4):E510–E20.

    Article  CAS  Google Scholar 

  6. Klubo-Gwiezdzinska J, Costello J Jr, Patel A, Bauer A, Jensen K, Mete M, et al. Treatment with metformin is associated with higher remission rate in diabetic patients with thyroid cancer. The Journal of Clinical Endocrinology & Metabolism. 2013;98(8):3269–79.

    Article  CAS  Google Scholar 

  7. Sahra IB, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene. 2008;27(25):3576–86.

    Article  CAS  PubMed  Google Scholar 

  8. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73.

    Article  CAS  PubMed  Google Scholar 

  9. Yung MMH, Chan DW, Liu VWS, Yao K-M, Ngan HY-S. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer. 2013;13(1):327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rattan R, Giri S, Hartmann LC, Shridhar V. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J Cell Mol Med. 2011;15(1):166–78.

    Article  CAS  PubMed  Google Scholar 

  11. Bikas A, Van Nostrand D, Jensen K, Desale S, Mete M, Patel A, et al. Metformin attenuates 131I-induced decrease in peripheral blood cells in patients with differentiated thyroid cancer. Thyroid. 2016;26(2):280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen G, Nicula D, Renko K, Derwahl M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol Rep. 2015;33(4):1994–2000.

    Article  CAS  PubMed  Google Scholar 

  13. Cho SW, Yi KH, Han SK, Sun HJ, Kim YA, Oh B-C, et al. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol Cell Endocrinol. 2014;393(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  14. Han B, Cui H, Kang L, Zhang X, Jin Z, Lu L, et al. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumor Biol. 2015;36(8):6295–304.

    Article  CAS  Google Scholar 

  15. Bartolomé A, Guillén C, Benito M. Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic β-cell proliferation. Endocrinology. 2010;151(7):3084–94.

    Article  CAS  PubMed  Google Scholar 

  16. Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin N Am. 2008;37(2):375–87.

    Article  CAS  Google Scholar 

  17. Liu Y, Zhang Y, Jia K, Dong Y, Ma W. Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway. Experimental and therapeutic medicine. 2015;9(4):1401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(11):1938–45.

    CAS  Google Scholar 

  19. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284(35):23204–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho K-K, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70(1):367–77.

    Article  CAS  PubMed  Google Scholar 

  21. Xie L, Ushmorov A, Leithäuser F, Guan H, Steidl C, Färbinger J, et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood. 2012;119(15):3503–11.

    Article  CAS  PubMed  Google Scholar 

  22. Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A, et al. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One. 2013;8(8):e72400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaballos MA, Santisteban P. FOXO1 controls thyroid cell proliferation in response to TSH and IGF-I and is involved in thyroid tumorigenesis. Mol Endocrinol. 2013;27(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(11):1978–86.

    CAS  Google Scholar 

  25. Song H-m, Song J-l, Li D-f, Hua K-y, Zhao B-k, Fang L. Inhibition of FOXO1 by small interfering RNA enhances proliferation and inhibits apoptosis of papillary thyroid carcinoma cells via Akt/FOXO1/Bim pathway. OncoTargets and therapy. 2015;8:3565.

  26. Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem. 2008;114(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  27. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci. 2003;100(20):11285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang B, Gui L, Zhao X, Zhu L, Li Q. FOXO1 is a tumor suppressor in cervical cancer. Genet Mol Res. 2015;14(2):6605–16.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig. 2001;108(8):1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care. 2010;33(6):1304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  CAS  PubMed  Google Scholar 

  32. Karnevi E, Said K, Andersson R, Rosendahl AH. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer. 2013;13(1):235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or-independent manners. PLoS One. 2013;8(4):e61537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song J, Ren P, Zhang L, Wang XL, Chen L, Shen YH. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem Biophys Res Commun. 2010;393(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, et al. New insight into metformin action: regulation of ChREBP and FoXO1 activities in endothelial cells. Mol Endocrinol. 2015;29(8):1184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zatara G, Hertz R, Shaked M, Mayorek N, Morad E, Grad E, et al. Suppression of FoxO1 activity by long-chain fatty acyl analogs. Diabetes. 2011;60(7):1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbato DL, Tatulli G, Aquilano K, Ciriolo M. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 2013;4(10):e861.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran, Iran for their excellent technical and financial supports. This manuscript was extracted from PhD thesis of Zahra Nozhat (grant No: 852). The authors wish to acknowledge Ms. Niloofar Shiva for editing of English grammar and syntax of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hedayati.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Key Points

• Metformin decreased cell viability of ATC-derived cells in a dose-and time-dependent manner

• Decrease of cell viability by metformin significantly was associated with the downregulation of PI3K and AKT mRNA levels of the PI3K/AKT signaling pathway

• Metformin increased the downregulation of FOXO1but an increase in cell viability following FOXO1 downregulation was not observed

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozhat, Z., Mohammadi-Yeganeh, S., Azizi, F. et al. Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines. DARU J Pharm Sci 26, 93–103 (2018). https://doi.org/10.1007/s40199-018-0208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-018-0208-2

Keywords

Navigation