Skip to main content
Log in

Effect of Cooling Rate on Microstructure and Effective Grain Size for a Ni–Cr–Mo–B High-Strength Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of cooling rate on microstructure and effective grain size (EGS) of a Ni–Cr–Mo–B high-strength steel has been studied by dilatometer, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The results show that the microstructure of the Ni–Cr–Mo–B steel is dependent on cooling rate in the following sequence: lath martensite (LM), mixed LM and lath bainite (LB), mixed LB and granular bainite (GB) and GB. The critical cooling rates for appearance of LB and GB are about 10 °C/s and 0.5 °C/s, respectively. The LM (> 10 °C/s) consists of few blocky regions with a width of several micros. Compared with the lath regions, the blocky regions in LM form at higher actual transformation temperatures during cooling. The blocky region area percentage in LM keeps almost constant about 8% at different cooling rates (> 10 °C/s) due to similar martensite transformation starting temperature (Ms). The LB percentage in mixed LM/LB increases gradually with decreasing cooling rate (10–0.5 °C/s). The EBSD results show that different microstructures have different EGS. The mixed LM/LB exhibits the smallest EGS due to the separation of the prior austenite grains by the pre-formed LB and the refinement of the LM. Meanwhile, the mixed LM/LB at different cooling rates (10–0.5 °C/s) exhibits almost the same EGS because the LB and LM in the mixed LM/LB have a similar high-angle grain boundary density and similar EGS. Because the blocky regions contain few high-angle grain boundaries and have similar area percentages in the LM, the LM at different cooling rates (> 10 °C/s) exhibits almost the same EGS. The ferrite in GB exhibits as a whole with few high-angle grain boundaries; thus, the mixed LB/GB exhibits the largest EGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q.H. Wang, Q.B. Ye, Z.D. Wang, L.Y. Kan, H.T. Wang, Metals 10, 572 (2020)

    Article  CAS  Google Scholar 

  2. B.S. Xie, Q.W. Cai, Y. Yun, G.S. Li, Z. Ning, Mater. Sci. Eng. A 680, 454 (2017)

    Article  CAS  Google Scholar 

  3. H.B. Liu, H.Q. Zhang, J.F. Li, Metals 8, 628 (2018)

    Article  Google Scholar 

  4. T. Zhou, H. Yu, S.Y. Wang, Steel Res. Int. 88, 1700132 (2017)

    Article  Google Scholar 

  5. Z.Y. Gao, Dissertation, University of Science and Technology Beijing, 2016

  6. S.Q. Zhang, X.F. Hu, Y.B. Du, H.C. Jiang, H.Y. Pang, L.J. Rong, Acta Metall. Sin. 56, 1227 (2020)

    CAS  Google Scholar 

  7. T. Zhou, H. Yu, S.Y. Wang, Mater. Sci. Eng. A 658, 150 (2016)

    Article  CAS  Google Scholar 

  8. D.S. Liu, B.G. Cheng, Y.Y. Chen, Metall. Mater. Trans. A 44, 440 (2013)

    Article  Google Scholar 

  9. X.Y. Wang, T. Pan, H. Wang, H. Su, X.Y. Li, X.Z. Cao, Acta Metall. Sin. 48, 401 (2012)

    Article  CAS  Google Scholar 

  10. Y. You, C.J. Shang, N. Wenjin, S. Subramanian, Mater. Sci. Eng. A 558, 692 (2012)

    Article  CAS  Google Scholar 

  11. Z. Guo, C.S. Lee, J.W. Morris, Acta Mater. 52, 5511 (2004)

    Article  CAS  Google Scholar 

  12. G.H. Gao, H. Zhang, B.Z. Bai, Acta Metall. Sin. 47, 513 (2011)

    CAS  Google Scholar 

  13. X.H. Xi, J.L. Wang, L.Q. Chen, Z.D. Wang, Acta Metall Sin. -Engl. Lett. 34, 617 (2020)

    Article  Google Scholar 

  14. L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe, Acta Mater. 95, 366 (2015)

    Article  CAS  Google Scholar 

  15. Z.H. Jiang, P. Wang, D.Z. Li, Y.Y. Li, Mater. Sci. Eng. A 699, 165 (2017)

    Article  CAS  Google Scholar 

  16. J. Hu, L.X. Du, H. Liu, G.S. Sun, H. Xie, H.L. Yi, R.D.K. Misra, Mater. Sci. Eng. A 647, 144 (2015)

    Article  CAS  Google Scholar 

  17. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59, 5845 (2011)

    Article  CAS  Google Scholar 

  18. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54, 5323 (2006)

    Article  CAS  Google Scholar 

  19. W.T. Zhu, J.J. Cui, Z.Y. Chen, Y. Zhao, L.Q. Chen, Acta Metall. Sin. -Engl. Lett. (2021)

  20. H. Duan, Y.Y. Shan, K. Yang, X.B. Shi, W. Yan, Y. Ren, Acta Metall. Sin. -Engl. Lett. 34, 639 (2020)

    Article  Google Scholar 

  21. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, Y. Matsuda, Acta Mater. 32, 1779 (1984)

    Article  CAS  Google Scholar 

  22. S. Ramesh Babu, T. Nyyssönen, M. Jaskari, A. Järvenpää, T.P. Davis, S. Pallaspuro, J. Kömi, D. Porter, Metals 9, 1255 (2019)

    Article  Google Scholar 

  23. I.V. Ryaposov, L.M. Kleiner, A.A. Shatsov, E.A. Noskova, Metal Sci. Heat Treat. 50, 435 (2008)

    Article  CAS  Google Scholar 

  24. N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 145, 154 (2018)

    Article  CAS  Google Scholar 

  25. A. Shibata, S. Morito, T. Furuhara, T. Maki, Acta Mater. 57, 483 (2009)

    Article  CAS  Google Scholar 

  26. Y.L. Zhou, T. Jia, X.J. Zhang, Z.Y. Liu, R.D.K. Misra, Mater. Sci. Eng. A 626, 352 (2015)

    Article  CAS  Google Scholar 

  27. J. Hidalgo, M.J. Santofimia, Metall. Mater. Trans. A 47, 5288 (2016)

    Article  CAS  Google Scholar 

  28. J.W. Morris Jr., ISIJ Int. 48, 1063 (2008)

    Article  CAS  Google Scholar 

  29. T. Hanamura, S. Torizuka, S. Tamura, S. Enokida, H. Takechi, ISIJ Int. 53, 2218 (2013)

    Article  CAS  Google Scholar 

  30. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, Z.S. Yan, Mater. Des. 36, 220 (2012)

    Article  CAS  Google Scholar 

  31. Y.X. Zheng, F.M. Wang, C.R. Li, Y.L. Li, J. Cheng, R.F. Cao, ISIJ Int. 58, 1126 (2018)

    Article  CAS  Google Scholar 

  32. N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 60, 2387 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Liaoning Revitalization Talents Program (No. XLYC1907143) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDC04000000 and XDA28040200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Hu or Lijian Rong.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, X., Jiang, H. et al. Effect of Cooling Rate on Microstructure and Effective Grain Size for a Ni–Cr–Mo–B High-Strength Steel. Acta Metall. Sin. (Engl. Lett.) 35, 1862–1872 (2022). https://doi.org/10.1007/s40195-022-01422-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01422-6

Keywords

Navigation