Skip to main content
Log in

Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influences of initial grain size (IGS) with 20 µm and 50 µm on the hot flow behavior and microstructural changes of pure copper were investigated using hot compression tests at a temperature range of 623–1073 K and strain rate range of 0.001–0.1 s−1. The effects of critical stress and corresponding critical strain were studied based on the internal and external processing parameters. The critical stress and strain decreased with increasing temperature and decreasing strain rate. The investigation results of the microstructure and true strain–stress diagrams showed that dynamic recovery, dynamic recrystallization (DRX), and twinning mechanisms were caused during the hot deformation of pure copper. Microstructure evolution indicated some DRXed fine-grain took place around grain boundary of hot deformed samples with IGS of 20 µm whereas DRXed fine-grain took place in interior grains for samples with larger IGS. The results also showed that grain growth is also dependent on IGS as the grain growth rate for samples with the larger IGS is greater than the smaller IGS. The critical strain rate and the temperature were obtained at 0.01 s−1 and 973 K, respectively, for the sudden change in the grain growth rate. Also, twinning highly depended on IGS which almost did not happen in fine grain size while the volume fraction of twinning increased with increasing grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. W.H. Tian, A.L. Fan, H.Y. Gao, J. Luo, Z. Wang, Mater. Sci. Eng. A 350, 160 (2003)

    Google Scholar 

  2. J.Y. Yang, W.J. Kim, J. Mater. Res. Technol. 9, 960 (2020)

    CAS  Google Scholar 

  3. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014)

    CAS  Google Scholar 

  4. S. Sakui, T. Sakai, K. Takeishi, Trans. Iron Steel Inst. Jpn. 17, 718 (1977)

    CAS  Google Scholar 

  5. H.J. McQueen, J.J. Jonas, Recovery and Recrystallization during High Temperature Deformation, in Plastic Deformation of Materials. ed. by R.J. Arsenault (Elsevier, Amsterdam, 1975), pp. 393–493

    Google Scholar 

  6. Y. Liu, W. Xiong, Q. Yang, J.W. Zeng, W. Zhu, G. Sunkulp, J. Mater. Eng. Perform. 27, 1812 (2018)

    CAS  Google Scholar 

  7. S.H. Huang, D.Y. Shu, C.K. Hu, S.F. Zhu, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 26, 1044 (2016)

    CAS  Google Scholar 

  8. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, J. Alloys Compd. 640, 101 (2015)

    CAS  Google Scholar 

  9. G. Liu, W. Xie, A. Hadadzadeh, G. Wei, Z. Ma, J. Liu, Y. Yang, W. Xie, X. Peng, M. Wells, J. Alloys Compd. 766, 460 (2018)

    CAS  Google Scholar 

  10. B. Song, N. Guo, T. Liu, Q.S. Yang, Mater. Des. 62, 352 (2014)

    CAS  Google Scholar 

  11. F.Z. Hassani, M. Ketabchi, M.T. Hassani, J. Mater. Sci. 46, 7689 (2011)

    CAS  Google Scholar 

  12. R. Gehrmann, M.M. Frommert, G. Gottstein, Mater. Sci. Eng. A 395, 338 (2005)

    Google Scholar 

  13. F. Guo, D. Zhang, X. Fan, J. Li, L. Jiang, F. Pan, Mater. Sci. Eng. A 655, 92 (2016)

    CAS  Google Scholar 

  14. Y.T. Zhu, X.Z. Liao, X.L. Wu, J. Narayan, J. Mater. Sci. 48, 4467 (2013)

    CAS  Google Scholar 

  15. C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127 (2012)

    CAS  Google Scholar 

  16. A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement, P. Haasen, Prog. Mater. Sci. 32, 1 (1988)

    CAS  Google Scholar 

  17. S.W. Wang, H.W. Song, Y. Chen, S.H. Zhang, H.H. Li, Acta Metall. Sin. (Engl. Lett.) 33, 1618 (2020)

    CAS  Google Scholar 

  18. Y.H. Zhao, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 474, 342 (2008)

    Google Scholar 

  19. Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1 (2012)

    CAS  Google Scholar 

  20. X.J. Wang, X.J. Sun, C. Song, H. Chen, S. Tong, W. Han, F. Pan, Acta Metall. Sin. (Engl. Lett.) 32, 746 (2019)

    CAS  Google Scholar 

  21. M.A. Meyers, U.R. Andrade, A.H. Chokshi, Metall. Mater. Trans. A 26, 2881 (1995)

    Google Scholar 

  22. Q. Yang, M. Ma, Y. Tan, S. Xiang, F. Zhao, Y. Liang, Metals (Basel) 9, 891 (2019)

    CAS  Google Scholar 

  23. Y. Yang, Z. Zhang, X. Li, Q. Wang, Y. Zhang, Mater. Des. 51, 592 (2013)

    CAS  Google Scholar 

  24. H. Ahmadi, H.R. Rezaei Ashtiani, M. Heidari, Mater. Today Commun. 25, 101528 (2020)

    CAS  Google Scholar 

  25. H.R.R. Ashtiani, A.A. Shayanpoor, Trans. Nonferrous Met. Soc. China 31, 345 (2021)

    CAS  Google Scholar 

  26. A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323, 177 (2002)

    Google Scholar 

  27. M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49, 4025 (2001)

    CAS  Google Scholar 

  28. G. Liang, Y. Ali, G. You, M.X. Zhang, Materialia 3, 113 (2018)

    Google Scholar 

  29. Y. Ali, G. You, F. Pan, M.X. Zhang, Mater. Trans. A Phys. Metall. Mater. Sci. 48, 474 (2017)

    CAS  Google Scholar 

  30. J. Dai, M.A. Easton, M. Zhang, D. Qiu, X. Xiong, W. Liu, G. Wu, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 4665 (2014)

    CAS  Google Scholar 

  31. H. Miura, M. Ozama, R. Mogawa, T. Sakai, Scr. Mater. 48, 1501 (2003)

    CAS  Google Scholar 

  32. H. Beladi, P. Cizek, P.D. Hodgson, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 1175 (2009)

    Google Scholar 

  33. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng. A 538, 236 (2012)

    CAS  Google Scholar 

  34. P.D. Littlewood, T.B. Britton, A.J. Wilkinson, Acta Mater. 59, 6489 (2011)

    CAS  Google Scholar 

  35. H.R. Rezaei Ashtiani, P. Shahsavari, Trans. Nonferrous Met. Soc. China 30, 2927 (2020)

    CAS  Google Scholar 

  36. B. Verlinden, J. Driver, I. Samajdar, R. Doherty, Thermo-Mechanical Processing of Metallic Materials‏, n.d.

  37. R. Ding, Z.X. Guo, Acta Mater. 49, 3163 (2001)

    CAS  Google Scholar 

  38. Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen, Z.C. Huang, J. Alloys Compd. 870, 159534 (2021)

    CAS  Google Scholar 

  39. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon press, Oxford, 1982)

    Google Scholar 

  40. M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093 (2004)

    CAS  Google Scholar 

  41. H.R. Rezaei Ashtiani, A.A. Shayanpoor, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00943-y

    Article  Google Scholar 

  42. T. Hirata, T. Osa, H. Hosokawa, K. Higashi, Mater. Trans. 43, 2385 (2002)

    CAS  Google Scholar 

  43. H.R. Rezaei Ashtiani, M.H. Parsa, H. Bisadi, Mater. Des. 42, 478 (2012)

    CAS  Google Scholar 

  44. D. Feng, X.M. Zhang, S.D. Liu, Y.L. Deng, Mater. Sci. Eng. A 608, 63 (2014)

    CAS  Google Scholar 

  45. G. Wang, H. Peng, C. Zhang, S. Wang, and Y. Wen, Smart Mater. Struct. 25, 75013 (2016)

    Google Scholar 

  46. F. Chen, H. Wang, H. Zhu, H. Zhu, F. Ren, Z. Cui, J. Manuf. Process. 38, 223 (2019)

    Google Scholar 

  47. H.R. Rezaei Ashtiani, A.A. Shayanpoor, Mater. Today Commun. 28, 102652 (2021)

    CAS  Google Scholar 

  48. A.A.S. Mohammed, E.A. El-Danaf, A.K.A. Radwan, Mater. Sci. Eng. A 457, 373 (2007)

    Google Scholar 

  49. S.A. Sani, G.R. Ebrahimi, H. Vafaeenezhad, A.R. Kiani-Rashid, J. Magnes. Alloy. 6, 134 (2018)

    CAS  Google Scholar 

  50. N.R. Jaladurgam, A.K. Kanjarla, Mater. Sci. Eng. A 712, 240 (2018)

    CAS  Google Scholar 

  51. H. Matsumoto, V. Velay, J. Alloys Compd. 708, 404 (2017)

    CAS  Google Scholar 

  52. X.Y. Yang, M. Sanada, H. Miura, T. Sakai, Mater. Sci. Forum 488–489, 223 (2005)

    Google Scholar 

  53. N. Narita, J. Takamura, Philos. Mag. 29, 1001 (1974)

    CAS  Google Scholar 

  54. P. Zhou, J.Q. Zhou, Z.X. Ye, E. Jiang, W.B. Hu, H.L. Le, Strength Mater. 48, 69 (2016)

    CAS  Google Scholar 

  55. Y. Chen, L. Jin, J. Dong, Z. Zhang, F. Wang, Mater. Charact. 118, 363 (2016)

    CAS  Google Scholar 

  56. P. Nnamchi, A. Younes, S. González, Intermetallics 105, 61 (2019)

    CAS  Google Scholar 

  57. B. Wu, J. Li, L. Liu, X. Chen, J. Tan, J. Song, M. Rashad, F. Pan, Acta Metall. Sin. (Engl. Lett.) 34, 606 (2021)

    Google Scholar 

  58. P. Zhou, Q.X. Ma, Acta Metall. Sin. (Engl. Lett.) 30, 907 (2017)

    CAS  Google Scholar 

  59. C. Wu, S. Han, Acta Metall. Sin. (Engl. Lett.) 31, 963 (2018)

    CAS  Google Scholar 

  60. D.X. Wen, Y.C. Lin, Y. Zhou, Vacuum 141, 316 (2017)

    CAS  Google Scholar 

  61. M.S. Chen, Y.C. Lin, K.K. Li, Y. Zhou, Comput. Mater. Sci. 122, 150 (2016)

    CAS  Google Scholar 

  62. A.N. Behera, A. Chaudhuri, R. Kapoor, J.K. Chakravartty, S. Suwas, Mater. Des. 92, 750 (2016)

    CAS  Google Scholar 

  63. M.S. Chen, Y.C. Lin, X.S. Ma, Mater. Sci. Eng. A 556, 260 (2012)

    CAS  Google Scholar 

  64. A. Dehghan-Manshadi, P.D. Hodgson, Metall. Mater. Trans. A 39, 2830 (2008)

    Google Scholar 

  65. W.X. Wu, L. Jin, J. Dong, Z.Y. Zhang, W.J. Ding, Mater. Sci. Eng. A 556, 519 (2012)

    CAS  Google Scholar 

  66. S. Aliakbari Sani, G.R. Ebrahimi, A.R. Kiani Rashid, J. Magnes. Alloy. 4, 104 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rezaei Ashtiani.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Ashtiani, H.R., Shayanpoor, A.A. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper. Acta Metall. Sin. (Engl. Lett.) 35, 662–678 (2022). https://doi.org/10.1007/s40195-021-01346-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01346-7

Keywords

Navigation