Abstract
A 3D multi-scale finite element model was developed to predict the effective thermal conductivity of graphene nanoplatelet (GNP)/Al composites. The factors influencing the effective thermal conductivity of the GNP/Al composites were investigated, including the orientation, shape, aspect ratio, configuration and volume fraction of GNPs. The results show that GNPs shape has a little influence on the thermal conductivity of GNP/Al composites, and composites with elliptic GNPs have the highest thermal conductivity. In addition, with increasing the aspect ratio of GNPs, the thermal conductivity of GNP/Al composites increases and finally tends to be stable. The GNPs configuration strongly influences the thermal conductivity of GNP/Al composites, and the thermal conductivity of the composites with layered GNPs is the highest among the five configurations. The effective thermal conductivity is sensitive to volume fraction of GNPs. Ideally, when the volume fraction of layered GNPs reaches 1.54%, the thermal conductivity of GNP/Al composites is as high as 400 W/m K. The findings of this study could provide a good theoretical basis for designing high thermal conductivity GNP/Al composites.
This is a preview of subscription content, access via your institution.



















References
I. Tlili, T.A. Alkanhal, A.A. Barzinjy, R.N. Dara, A. Shafee, Z.X. Li, J. Mol. Liq. 294, 111564 (2019)
A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)
D.V. Thanh, N.V. Thien, B.H. Thang, N.V. Chuc, N.M. Hong, B.T. Trang, T.D. Lam, D.T.T. Huyen, P.N. Hong, P.N. Minh, J. Electron. Mater. 45, 2522 (2016)
A. Bhadauria, L.K. Singh, T. Laha, Mater. Sci. Eng. A 749, 14 (2019)
X.Q. Han, L.Z. Yang, N.Q. Zhao, C.N. He, Acta Metall. Sin. Engl. Lett. 34, 111 (2021)
S.Y. Guo, X. Zhang, C.S. Shi, E.Z. Liu, C.N. He, F. He, N.Q. Zhao, Powder Technol. 362, 126 (2020)
A. Saboori, M. Pavese, C. Badini, P. Fino, Acta Metall. Sin. Engl. Lett. 31, 148 (2018)
S. Depaifve, S. Hermans, D. Ruch, A. Laachachi, Thermochim. Acta 691, 178712 (2020)
W.S. Yang, G.Q. Chen, J. Qiao, S.F. Liu, R. Xiao, R.H. Dong, M. Hussain, G.H. Wu, Mater. Sci. Eng. A 700, 351 (2017)
G. Li, B.W. Xiong, J. Alloys Compd. 697, 31 (2017)
A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri, D. Lahiri, Mater. Sci. Eng. A 695, 20 (2017)
B.Y. Ju, W.S. Yang, P.Z. Shao, M. Hussain, Q. Zhang, Z.Y. Xiu, X.W. Hou, J. Qiao, G.H. Wu, Carbon 162, 346 (2020)
C.H. Jeon, Y.H. Jeong, J.J. Seo, H.N. Tien, S.T. Hong, Y.J. Yum, S.H. Hur, K.J. Lee, Int. J. Precis. Eng. Manuf. 15, 1235 (2014)
A. Saboori, M. Pavese, C. Badini, P. Fino, Acta Metall. Sin. Engl. Lett. 30, 675 (2017)
S. Polat, Y. Sun, E. Çevik, H. Colijn, Diam. Relat. Mater. 98, 107457 (2019)
C.Y. Wang, Y.S. Su, Q.B. Ouyang, D. Zhang, Diam. Relat. Mater. 108, 107929 (2020)
W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Int. J. Heat Mass Transf. 51, 1431 (2008)
W.K. Xiao, X. Zhai, P.F. Ma, T.T. Fan, X.T. Li, Res. Phys. 9, 673 (2018)
Y.F. Zhang, Y.H. Zhao, S.L. Bai, X.W. Yuan, Compos. B Eng. 106, 324 (2016)
Z.W. Xu, S.H. He, J.J. Zhang, S.J. Huang, A.F. Chen, X.L. Fu, P. Zhang, Compos. Sci. Technol. 183, 107826 (2019)
M. Inagaki, Y. Kaburagi, Y. Hishiyama, Adv. Eng. Mater. 16, 494 (2014)
S. Kumar, R.S. Bhoopal, P.K. Sharma, R.S. Beniwal, R. Singh, Open. J. Compos. Mater. 1, 10 (2011)
A.A. Balandin, Nat. Mater. 10, 569 (2011)
I.E. Monje, E. Louis, J.M. Molina, J. Mater. Sci. 51, 8027 (2016)
Y.S. Su, Z. Li, Y. Yu, L. Zhao, Z.Q. Li, Q. Guo, D.B. Xiong, D. Zhang, Sci. China Mater. 61, 112 (2018)
G. Dai, L. Mishnaevsky, Compos. Sci. Technol. 91, 71 (2014)
P.L. Bian, S. Schmauder, H. Qing, Compos. Struct. 245, 112337 (2020)
J.J. Chen, J.C. Han, Results Phys. 15, 102803 (2019)
B.Z. Gao, J.Z. Xu, J.J. Peng, F.Y. Kang, H.D. Du, J. Li, S.W. Chiang, C.J. Xu, N. Hu, X.S. Ning, Thermochim Acta 614, 1 (2015)
W.L. Yang, J.Q. Sang, L.P. Zhou, K. Peng, J.J. Zhu, D.Y. Li, Diam. Relat. Mater. 81, 127 (2018)
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35, 2892 (2019)
B.J. Yan, L. Cheng, B.Q. Li, P.C. Liu, X.W. Wang, R. Gao, Z.L. Yang, S.H. Xu, X.D. Ding, P.C. Zhang, Mater. Des. 189, 108483 (2020)
Y.Y. Sun, L.Y. Zhou, Y. Han, L. Cui, L. Chen, Int. J. Heat Mass Transf. 160, 120157 (2020)
C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, L.H. Feng, Carbon 55, 116 (2013)
C.P. Feng, S.S. Wan, W.C. Wu, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, J. Chen, W. Yang, Compos. Sci. Technol. 167, 456 (2018)
N. Song, D.J. Jiao, P. Ding, S.Q. Cui, S.F. Tang, L.Y. Shi, J. Mater. Chem. C 4, 305 (2016)
B. Zhou, W. Luo, J.Q. Yang, X.B. Duan, Y.W. Wen, H.M. Zhou, R. Chen, B. Shan, Compos. Part A Appl. Sci. Manuf. 90, 410 (2016)
J.K. Chen, I.S. Huang, Compos. Part B Eng. 44, 698 (2013)
W.J. Li, Y. Liu, G.H. Wu, Carbon 95, 545 (2015)
Acknowledgements
This work is financially supported by the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-JSC015); the National Natural Science Foundation of China (Nos. 51931009, 51871214 and 51871215); the National Key R&D Program of China (No. 2017YFB0703104).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Available online at http://link.springer.com/journal/40195.
Rights and permissions
About this article
Cite this article
Yang, X.S., Zhou, L., Liu, K.Y. et al. Finite Element Prediction of the Thermal Conductivity of GNP/Al Composites. Acta Metall. Sin. (Engl. Lett.) 35, 825–838 (2022). https://doi.org/10.1007/s40195-021-01298-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40195-021-01298-y