Skip to main content

Advertisement

Log in

Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The present article aims at elucidating the effect of thermo-mechanical controlled processing (TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy steels for developing superior low temperature toughness construction steel. The microstructural features were characterized by scanning electron microscope equipped with electron backscatter diffraction, and the mechanical behaviors in terms of tensile properties and impact toughness were analyzed in correlation with microstructural evolution. The results showed that the lower finish cooling temperature could lead to a considerable increase in impact toughness for this steel. A mixed microstructure was obtained by TMCP at lower finish cooling temperature, which contained much fine lath-like bainite with dot-shaped M/A constituent and less granular bainite and bainite ferrite. In this case, this steel possesses yield and ultimate tensile strengths of ~ 885 MPa and 1089 MPa, respectively, and a total elongation of ~ 15.3%, while it has a lower yield ratio of ~ 0.81. The superior impact toughness of ~ 89 J at −20 °C was obtained, and this was resulted from the multi-phase microstructure including grain refinement, preferred grain boundaries misorientation, fine lath-like bainite with dot-shaped M/A constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Nobuo, K. Hiroyuki, K. Masayoshi, ISIJ Int. 32, 335 (1992)

    Article  Google Scholar 

  2. X.H. Li, L. Shi, Y.C. Liu, K.F. Gan, C.X. Liu, Mat. Sci. Eng. A 772, 138683 (2020)

    Article  CAS  Google Scholar 

  3. P.C.M. Rodrigues, E.V. Pereloma, D.B. Santos, Mat. Sci. Eng. A 283, 136 (2000)

    Article  Google Scholar 

  4. A.A Sammy-Armstrong, A.K. Martin, K. Paul, M. Jukka, Proc. I. Mech. Eng. B-J. Eng. 1 231, 369 (2017)

  5. M. Jahazi, B. Egbali, J. Mater. Process. Technol. 103, 276 (2000)

    Article  Google Scholar 

  6. W.T. Zhu, J.J. Cui, Z.Y. Chen, Y. Feng, Y. Zhao, L.Q. Chen, Acta Metall. Sin. 57, 340 (2021)

    CAS  Google Scholar 

  7. F.Q. Wang, J.Y. Xie, J.D. Li, Q.J. Zhu, J. Univ. Sci. Technol. B. 32, 450 (2010)

    CAS  Google Scholar 

  8. G. Azizi, H. Mirzadeh, M.H. Parsa, Mat. Sci. Eng. A 639, 402 (2015)

    Article  CAS  Google Scholar 

  9. S.K. Dhua, D. Mukerjee, D.S. Sarma, Metall. Mater. Trans. A 34, 2493 (2003)

    Article  Google Scholar 

  10. H.K. Sung, S. Lee, S.Y. Shin, Metall. Mater. Trans. A 45, 2004 (2014)

    Article  CAS  Google Scholar 

  11. I.A. Yakubtsov, J.D. Boyd, Mater. Sci. Technol. 17, 296 (2001)

    Article  CAS  Google Scholar 

  12. Y. Fukumoto, Eng. Struct. 18, 786 (1996)

    Article  Google Scholar 

  13. Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42, 1571 (2002)

    Article  CAS  Google Scholar 

  14. H.K.D.H. Bhadeshia, Mat. Sci. Eng. A 378, 34 (2004)

    Article  Google Scholar 

  15. C.H. Lee, H.K.D.H. Bhadeshia, H.C. Lee, Mat. Sci. Eng. A 360, 249 (2003)

    Article  Google Scholar 

  16. G. Krauss, S.W. Thompson, ISIJ Int. 35, 937 (1995)

    Article  CAS  Google Scholar 

  17. H.K. Sung, D.H. Lee, S.Y. Shin, S. Lee, J.Y. Yoo, B. Hwang, Mat. Sci. Eng. A 624, 14 (2015)

    Article  CAS  Google Scholar 

  18. Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, C.J. Shang, Mater. Charact. 113, 60 (2016)

    Article  CAS  Google Scholar 

  19. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54, 5323 (2006)

    Article  CAS  Google Scholar 

  20. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54, 1279 (2006)

    Article  CAS  Google Scholar 

  21. Y.M. Kim, S.K. Kim, N.J. Kim, Mater. Sci. Forum 475–479, 289 (2005)

    Article  Google Scholar 

  22. X. Feaugas, Acta Mater. 47, 3617 (1999)

    Article  CAS  Google Scholar 

  23. E.I. Samuel, B.K. Choudhary, K.B.S. Rao, Scripta Mater. 46, 507 (2002)

    Article  CAS  Google Scholar 

  24. W. Dei, X.H. Gao, X.M. Qin, D.W. Zhao, L.X. Du, G.D. Wang, Acta Metall. Sin. 46, 533 (2010)

    Article  Google Scholar 

  25. S.H. Hashemi, Int. J. Pres. Ves. Pip. 85, 879 (2008)

    Article  CAS  Google Scholar 

  26. J. Chen, S. Tang, Z.Y. Liu, G.D. Wang, Mat. Sci. Eng. A 559, 241 (2013)

    Article  CAS  Google Scholar 

  27. J.J. Cui, W.T. Zhu, Z.Y. Chen, L.Q. Chen, Sci. Technol. Weld. Joi. 25, 169 (2020)

    Article  CAS  Google Scholar 

  28. X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, Int. J. Fract. 193, 131 (2015)

    Article  CAS  Google Scholar 

  29. X.D. Li, C.J. Shang, X.P. Ma, B. Gault, S.V. Subramanian, J.B. Sun, R.D.K. Misra, Scr. Mater. 139, 67 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51904071), the Independent Project of State Key Laboratory of Rolling and Automation, Northeastern University (Grant No. ZZ202001), the Key Research and Development Program of Hebei Province of China (Grant No. 18211019D), and the Start-up Project of Doctor Scientific Research of Liaoning Province (Grant No. 2020-BS-271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Jun Cui or Li-Qing Chen.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, WT., Cui, JJ., Chen, ZY. et al. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel. Acta Metall. Sin. (Engl. Lett.) 35, 527–536 (2022). https://doi.org/10.1007/s40195-021-01250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01250-0

Keywords

Navigation