Skip to main content
Log in

Numerical Simulation for the Optimization of Polygonal Pin Profiles in Friction Stir Welding of Aluminum

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The tool with polygonal pin profile has been widely employed in friction stir welding (FSW) of aluminum, but there is hardly an effective optimization methodology existed as the thermomechanical characteristics affected by pins with various flats number have not been understood comprehensively. Therefore, the present work employs a 3-dimensional computational fluid dynamics (CFD) model to have an integrated observation of the FSW process with the effect of polygonal pin profiles. Both the heat generation modes due to contact friction at the tool–workpiece interface and volumetric viscous dissipation in the vicinity of the tool are considered. The model is utilized to give a quantitative analysis of the heat generation, temperature distribution, plastic material flow and welding loads during the FSW process for various tools with polygonal pin profiles, as well as a variety of shoulder diameters, welding speeds and tool rotation speeds. The calculated results of thermal cycles, tool torques and joint cross sections for some typical polygonal pins and welding parameters are all found to be compared well with the experimental ones, which demonstrates the feasibility and applicability of the present numerical model. Particularly, a methodology is developed for the optimization of the flats number by identifying the torque components in both parallel and vertical direction of the pin-side flat region. The results show that the optimized pin flats number increases with increasing tool rotation speed, while the influence of both welding speed and shoulder diameter can be supposed to be insignificant. Moreover, the dependability of the optimized results is also discussed by considering wear tendency and service life of the pin for multiple welding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.S. Mishra, Z.Y. Ma, Mat. Sci. Eng. R 50, 1 (2005)

    Article  Google Scholar 

  2. Z.Y. Ma, Acta. Metall. Sin.-Engl. Lett. 33, 1 (2020)

    Article  Google Scholar 

  3. R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Sci. Technol. Weld. Joi. 16, 325 (2011)

    Article  CAS  Google Scholar 

  4. Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, Can. Metall. Quart. 51, 250 (2012)

    Article  CAS  Google Scholar 

  5. X.C. Liu, Y.Q. Zhen, Z.K. Shen, H.Y. Chen, W.Y. Li, W. Guo, Z.F. Yue, Chin. J. Mech. Eng. En. 33, 99 (2020)

    Google Scholar 

  6. K. Elangovan, V. Balasubramanian, Mat. Sci. Eng. A 459, 7 (2007)

    Article  Google Scholar 

  7. A. Tongne, C. Desrayaud, M. Jahazi, E. Feulvarch, J. Mater. Process. Technol. 239, 284 (2017)

    Article  CAS  Google Scholar 

  8. K.K. Mugada, K. Adepu, J. Manuf. Process. 32, 625 (2018)

    Article  Google Scholar 

  9. J. Schneider, S. Brooke, A.C. Nunes, Metall. Mater. Trans. B 47, 720 (2016)

    Article  CAS  Google Scholar 

  10. V.V. Patel, V. Badheka, A. Kumar, J. Mater. Process. Technol. 240, 68 (2017)

    Article  CAS  Google Scholar 

  11. C.V. Rao, G.M. Reddy, K.S. Rao, Def. Technol. 11, 197 (2015)

    Article  Google Scholar 

  12. P. Mastanaiah, A. Sharma, G.M. Reddy, J. Mater. Process. Technol. 257, 257 (2018)

    Article  CAS  Google Scholar 

  13. K. Ramanjaneyulu, G.M. Reddy, A.V. Rao, R. Markandeya, J. Mater. Eng. Perform. 22, 2224 (2013)

    Article  CAS  Google Scholar 

  14. D. Trimble, G.E. O’Donnell, J. Monaghan, J. Manuf. Process. 17, 141 (2015)

    Article  Google Scholar 

  15. V.S. Gadakh, A. Kumar, J.V. Patil, Weld. J. 93, 115 (2015)

    Google Scholar 

  16. M. Mehta, G.M. Reddy, A.V. Rao, A. De, Def. Technol. 11, 229 (2015)

    Article  Google Scholar 

  17. B.M.A. Al Bhadle, R.A.A. Al Azzawi, R. Thornton, K. Beamish, S. Shi, H.B. Dong, Sci. Technol. Weld. Joi. 24, 93 (2019)

  18. S.B. Aziz, M.W. Dewan, D.J. Huggett, M.A. Wahab, A.M. Okeil, T.W. Liao, Acta. Metall. Sin. Engl. Lett. 31, 1 (2018)

    Article  CAS  Google Scholar 

  19. S.B. Aziz, M.W. Dewan, D.J. Huggett, M.A. Wahab, A.M. Okeil, T.W. Liao, Acta. Metall. Sin. Engl. Lett. 29, 869 (2016)

    Article  CAS  Google Scholar 

  20. P.A. Colegrove, H.R. Shercliff, Sci. Technol. Weld. Joi. 9, 352 (2004)

    Article  CAS  Google Scholar 

  21. P.A. Colegrove, H.R. Shercliff, J. Mater. Process. Technol. 169, 320 (2005)

    Article  CAS  Google Scholar 

  22. Z. Sun, C.S. Wu, S. Kumar, J. Manuf. Process. 31, 801 (2018)

    Article  Google Scholar 

  23. Z. Sun, C.S. Wu, J. Mater. Process. Technol. 275, 116281 (2020)

    Article  Google Scholar 

  24. G. Chen G, H. Li H, G. Wang, Z. Guo, S. Zhang, Q. Dai, X. Wang, G. Zhang, Q. Shi, Int. J. Mach. Tool. Manu. 124, 12 (2018)

  25. G. Chen, S. Zhang, Y. Zhu, C. Yang, Q. Shi, Acta. Metall. Sin. Engl. Lett. 33, 3 (2020)

    Article  Google Scholar 

  26. H. Su, L. Xue, C. Wu, Int. J. Adv. Manuf. Technol. 108, 721 (2020)

    Article  Google Scholar 

  27. H. Su, C.S. Wu, M. Bachmann, M. Rethmeier, Mater. Des. 77, 114 (2015)

    Article  Google Scholar 

  28. Y. Zhu, G. Chen, Q. Chen, G. Zhang, Q. Shi, Mater. Des. 108, 400 (2016)

    Article  Google Scholar 

  29. M. Mehta, A. De, T. DebRoy, Sci. Technol. Weld. Joi. 19, 534 (2014)

    Article  CAS  Google Scholar 

  30. H. Wang, P.A. Colegrove, J.F. dos Santos, Comp. Mater. Sci. 71, 101 (2013)

    Article  CAS  Google Scholar 

  31. M. Mehta, A. Arora, A. De, T. DebRoy, Metall. Mater. Trans. A 42, 2716 (2011)

    Article  CAS  Google Scholar 

  32. A. Arora, A. De, T. DebRoy, Scr. Mater. 64, 9 (2011)

    Article  CAS  Google Scholar 

  33. G. Chen, Q. Ma, S. Zhang, J. Wu, G. Zhang, Q. Shi, J. Mater. Sci. Technol. 34, 128 (2018)

    Article  Google Scholar 

  34. J.F. Archard, J. Appl. Phys. 24, 981 (1953)

    Article  Google Scholar 

  35. A. Arora, M. Mehta, A. De, T. DebRoy, Int. J. Adv. Manuf. Technol. 61, 911 (2012)

    Article  Google Scholar 

  36. P. Sahlot, K. Jha, G.K. Dey, A. Arora, Metall. Mater. Trans. A 49, 2139 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52005297 and 52035005) and the Fundamental Research Funds of Shandong University (Grant No. 2019GN003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Su.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Wu, C. Numerical Simulation for the Optimization of Polygonal Pin Profiles in Friction Stir Welding of Aluminum. Acta Metall. Sin. (Engl. Lett.) 34, 1065–1078 (2021). https://doi.org/10.1007/s40195-021-01198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01198-1

Keywords

Navigation