Skip to main content

Advertisement

Log in

Effect of LiTFSI and LiFSI on Cycling Performance of Lithium Metal Batteries Using Thermoplastic Polyurethane/Halloysite Nanotubes Solid Electrolyte

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

All-solid-state lithium batteries (ASSLB) are promising candidates for next-generation energy storage devices. Nevertheless, the large-scale commercial application of high energy density ASSLB with the polymer electrolyte still faces challenges. In this study, a thin solid polymer composite electrolyte (SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane (TPU), lithium salt (LiTFSI or LiFSI), and halloysite nanotubes (HNTs) in a porous framework of polyethylene separator (PE) (TPU–HNTs–LiTFSI–PE or TPU–HNTs–LiFSI–PE). The composition, electrochemical performance, and especially the effect of anions (TFSI and FSI) on cycling performance are investigated. The results reveal that the flexible TPU–HNTs–LiTFSI–PE and TPU–HNTs–LiFSI–PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V (vs. Li+/Li) at 60 ℃, respectively. Reduction in FSI tends to form more LiF and sulfur compounds at the interface between TPU–HNTs–LiFSI–PE and Li metal anode, thus enhancing the interfacial stability. As a result, cell composed of TPU–HNTs–LiFSI–PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase (SEI) with a distinct decrease in charge-transfer resistance during cycling. Li|Li symmetric cell with TPU–HNTs–LiFSI–PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately 39 mV at a current density of 0.1 mA cm−2, while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU–HNTs–LiTFSI–PE. The initial capacities of NCM|TPU–HNTs–LiTFSI–PE|Li and NCM|TPU–HNTs–LiFSI–PE|Li cells were 149 and 114 mAh g−1, with capacity retention rates of 83.52% and 89.99% after 300 cycles at 0.5 C, respectively. This study provides a valuable guideline for designing flexible SPCE, which shows great application prospect in the practice of ASSLB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Liu, W. Yang, Z. Liu, H. Fan, W. Zheng, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01160-7

    Article  Google Scholar 

  2. X. He, Y. Zhang, L. Yang, J. Zhao, H. Li, Y. Gao, B. Wang, X. Guo, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01104-1

    Article  Google Scholar 

  3. B. Ding, Z. Cai, Z. Ahsan, Y. Ma, S. Zhang, G. Song, C. Yuan, W. Yang, C. Wen, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01095-z

    Article  Google Scholar 

  4. J.R. Nair, L. Imholt, G. Brunklaus, M. Winter, Electrochem. Soc. Interface 28, 55 (2019)

    CAS  Google Scholar 

  5. J. Liang, J. Luo, Q. Sun, X. Yang, R. Li, X. Sun, Energy Storage Mater. 21, 308 (2019)

    Google Scholar 

  6. S. Tan, X. Zeng, Q. Ma, X. Wu, Y. Guo, Electrochem. Energy Rev. 1, 113 (2018)

    CAS  Google Scholar 

  7. A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2, 16103 (2017)

    CAS  Google Scholar 

  8. M. Dirican, C. Yan, P. Zhu, X. Zhang, Mater. Sci. Eng. R 136, 27 (2019)

    Google Scholar 

  9. C. Tao, M. Gao, B. Yin, B. Li, Y. Huang, G. Xu, J. Bao, Electrochim. Acta 257, 31 (2017)

    CAS  Google Scholar 

  10. L. Liu, X. Wu, T. Li, J. Power Sour. 249, 397 (2014)

    CAS  Google Scholar 

  11. K. Ramanjaneyulu, N. Bar, M.S. Arif Sher Shah, S.V. Manorama, P. Basak, J. Power Sour. 217, 29 (2012).

  12. T. Wen, Y. Du, M. Digar, Eur. Polym. J. 38, 1039 (2002)

    CAS  Google Scholar 

  13. S. Ibrahim, A. Ahmad, N. Mohamed, Polymers 7, 747 (2015)

    CAS  Google Scholar 

  14. S. Qian, H. Chen, Z. Wu, D. Li, X. Liu, Y. Tang, S. Zhang, Batteries Supercaps (2020). https://doi.org/10.1002/batt.202000149

    Article  Google Scholar 

  15. C. Zhao, X. Zhang, X. Cheng, R. Zhang, R. Xu, P. Chen, H. Peng, J. Huang, Q. Zhang, Proc. Natl. Acad. Sci. 114, 11069 (2017)

    CAS  Google Scholar 

  16. Q. Zhu, X. Wang, J.D. Miller, A.C.S. Appl, Mater. Interfaces 11, 8954 (2019)

    CAS  Google Scholar 

  17. J. Tully, R. Yendluri, Y. Lvov, Biomacromol 17, 615 (2016)

    CAS  Google Scholar 

  18. J. Gao, Q. Shao, J. Chen, J. Energy Chem. 46, 237 (2020)

    Google Scholar 

  19. J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 14, 705 (2019)

    CAS  Google Scholar 

  20. G.G. Eshetu, T. Diemant, S. Grugeon, R.J. Behm, S. Laruelle, M. Armand, S. Passerini, A.C.S. Appl, Mater. Interfaces 8, 16087 (2016)

    CAS  Google Scholar 

  21. R. Cao, J. Chen, K.S. Han, W. Xu, D. Mei, P. Bhattacharya, M.H. Engelhard, K.T. Mueller, J. Liu, J. Zhang, Adv. Funct. Mater. 26, 3059 (2016)

    CAS  Google Scholar 

  22. J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li, Y. Huang, Adv. Energy Mater. 9, 1902767 (2019)

    CAS  Google Scholar 

  23. Q. Ma, X.X. Zeng, J. Yue, Y.X. Yin, T.T. Zuo, J.Y. Liang, Q. Deng, X.W. Wu, Y.G. Guo, Adv. Energy Mater. 9, 1803854 (2019)

    Google Scholar 

  24. J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie, Y. Huang, Energy Environ. Sci. (2020). https://doi.org/10.1039/D0EE02241A

    Article  Google Scholar 

  25. Z. Shen, H. Wen, H. Zhou, L. Hao, H. Chen, X. Zhou, Mater. Sci. Eng. C 105, 110073 (2019)

    CAS  Google Scholar 

  26. H.G. Buss, S.Y. Chan, N.A. Lynd, B.D. McCloskey, ACS Energy Lett. 2, 481 (2017)

    CAS  Google Scholar 

  27. Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun, A. Mauger, C.M. Julien, H. Xie, J. Liu, J. Power Sour. 420, 63 (2019)

    CAS  Google Scholar 

  28. S. Tang, Q. Lan, L. Xu, J. Liang, P. Lou, C. Liu, L. Mai, Y. Cao, S. Cheng, Nano Energy 71, 104600 (2020)

    Google Scholar 

  29. C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D.G. Ivey, W. Wei, Adv. Sci. 5, 1700996 (2018)

    Google Scholar 

  30. S. Xiong, Y. Diao, X. Hong, Y. Chen, K. Xie, J. Electroanal. Chem. 719, 122 (2014)

    CAS  Google Scholar 

  31. G.H. Lane, A.S. Best, D.R. MacFarlane, M. Forsyth, A.F. Hollenkamp, Electrochim. Acta 55, 2210 (2010)

    CAS  Google Scholar 

  32. G.H. Lane, P.M. Bayley, B.R. Clare, A.S. Best, D.R. MacFarlane, M. Forsyth, A.F. Hollenkamp, J. Phys. Chem. C 114, 21775 (2010)

    CAS  Google Scholar 

  33. S. Xiong, K. Xie, Y. Diao, X. Hong, J. Power Sour. 236, 181 (2013)

    CAS  Google Scholar 

  34. G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang, F. Wang, Y. Liu, X. Xiong, Angew. Chem. Int. Ed. 59, 2055 (2020)

    CAS  Google Scholar 

  35. K. Chen, R. Pathak, A. Gurung, E.A. Adhamash, B. Bahrami, Q. He, H. Qiao, A.L. Smirnova, J.J. Wu, Q. Qiao, Y. Zhou, Energy Storage Mater. 18, 389 (2019)

    Google Scholar 

  36. N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, Adv. Mater. 28, 1853 (2016)

    CAS  Google Scholar 

  37. Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, Adv. Mater. 29, 1605531 (2017)

    Google Scholar 

  38. S. Choudhury, L.A. Archer, Adv. Electron. Mater. 2, 1500246 (2016)

    Google Scholar 

  39. E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, Nat. Nanotechnol. 13, 337 (2018)

    CAS  Google Scholar 

  40. A.M. Gaikwad, B.V. Khau, G. Davies, B. Hertzberg, D.A. Steingart, A.C. Arias, Adv. Energy Mater. 5, 1401389 (2015)

    Google Scholar 

  41. R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q.Q. Qiao, Nat. Commun. 11, 93 (2020)

    CAS  Google Scholar 

  42. G. Wan, F. Guo, H. Li, Y. Cao, X. Ai, J. Qian, Y. Li, H. Yang, A.C.S. Appl, Mater. Interfaces 10, 593 (2018)

    CAS  Google Scholar 

  43. J. Yamaki, K.H. Shin-ichi Tobishima, K. Saito, M.A. Yasue Nemoto, J. Power Sour. 74, 219 (1998).

  44. M. Wang, Z. Peng, W. Luo, F. Ren, Z. Li, Q. Zhang, H. He, C. Ouyang, D. Wang, Adv. Energy Mater. 9, 1802912 (2019)

    Google Scholar 

  45. G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang, L. Chen, Energy Storage Mater. 23, 350 (2019)

    Google Scholar 

  46. X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chemical 4, 174 (2018)

    CAS  Google Scholar 

  47. L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Proc. Natl. Acad. Sci. USA 115, 1156 (2018)

    CAS  Google Scholar 

  48. Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge, B.W. Sheldon, Y.T. Cheng, Y. Qi, X. Xiao, Nano Lett. 16, 2011 (2016)

    CAS  Google Scholar 

  49. Z. Liu, Y. Qi, Y.X. Lin, L. Chen, P. Lu, L.Q. Chen, J. Electrochem. Soc. 163, A592 (2016)

    CAS  Google Scholar 

  50. X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C.W. Nan, Adv. Mater. 31, 1806082 (2019)

    Google Scholar 

  51. P. Zhou, Z. Zhang, H. Meng, Y. Lu, J. Cao, F. Cheng, Z. Tao, J. Chen, Nanoscale 8, 19263 (2016)

    CAS  Google Scholar 

  52. S. Yang, Q. Fan, Z. Shi, L. Liu, J. Liu, X. Ke, J. Liu, C. Hong, Y. Yang, Z. Guo, A.C.S. Appl, Mater. Interfaces 11, 36742 (2019)

    CAS  Google Scholar 

  53. L. Liu, X. Wang, C. Yang, P. Han, L. Zhang, L. Gao, Z. Wu, B. Liu, R. Liu, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01142-9

    Article  Google Scholar 

  54. P. Han, Y. Zhu, J. Liu, J. Power Sour. 284, 459 (2015)

    CAS  Google Scholar 

  55. L. Zhang, G. Liang, G. Peng, F. Zou, Y. Huang, M.C. Croft, A. Ignatov, J. Phys. Chem. C 116, 12401 (2012)

    CAS  Google Scholar 

  56. J. Zheng, W.H. Kan, A. Manthiram, A.C.S. Appl, Mater. Interfaces 7, 6926 (2015)

    CAS  Google Scholar 

  57. D. Yoo, S. Yang, Y.S. Yun, J.H. Choi, D. Yoo, K.J. Kim, J.W. Choi, Adv. Energy Mater. 8, 1802365 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 21673051) and the Department of Science and Technology of Guangdong Province, China (No. 2019A050510043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Ke or Zhicong Shi.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhong, J., Xie, W. et al. Effect of LiTFSI and LiFSI on Cycling Performance of Lithium Metal Batteries Using Thermoplastic Polyurethane/Halloysite Nanotubes Solid Electrolyte. Acta Metall. Sin. (Engl. Lett.) 34, 359–372 (2021). https://doi.org/10.1007/s40195-021-01191-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01191-8

Keywords

Navigation