Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg–Gd–Y–Zn–Zr Sheets Through Hot Rolling

Abstract

The Mg–Gd–Y–Zn–Zr alloy sheets with different texture characteristics and distribution of the interdendritic long period-stacking ordered (LPSO) phases were fabricated through altering the final rolling reduction (FRR). The results showed that the texture characteristic was closely related to FRR and affected the tensile properties of the resulted sheets to some extent. The Schmid factor (SF) of the basal \(\left\langle a \right\rangle\) slip improved with further FRR, which was ascribed to that the dynamic recrystallization (DRX) grains expand into the deformed grains with basal texture. However, the improvement of the tensile yield strength (TYS) with further FRR indicates that the strengthening effect from DRX grains surpasses the weakening effect from the elevated SF. The formation of the line-distributed interdendritic 14H-LPSO phases can also affect the tensile properties of the resulted sheets. The line-distributed interdendritic 14H-LPSO phases along rolling direction (RD) can act as reinforcing fiber and contribute to the higher TYS along RD and 45° to some extent, which resulted in the higher TYS along 45° compared with that along transverse direction (TD) for each resulted sheet under the circumstance of approximate basal \(\left\langle a \right\rangle\) and pyramid \(\left\langle {c + a} \right\rangle\) friction stress. Thus, the tensile yield strength is not only related to the texture, but also depends on the grain size and line-distributed interdendritic LPSO phases. The micro-cracks spread perpendicular to the tension direction, and thus, the larger cracks form within the line-distributed 14H-LPSO phases during tension along TD, which accounts for the lower fracture elongation along TD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. [1]

    Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Mater. Sci. Eng. A 473, 195 (2008)

    Article  CAS  Google Scholar 

  2. [2]

    R.G. Li, F. Asghar, J.H. Zhang, G.Y. Fu, Q. Liu, B.T. Guo, Y.M. Yu, S.G. Guo, Y. Su, X.J. Chen, L. Zhong, Acta Metall. Sin. (Engl. Lett.) 32, 245 (2019)

    CAS  Article  Google Scholar 

  3. [3]

    Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58, 2936 (2010)

    CAS  Article  Google Scholar 

  4. [4]

    M. Li, X. Wang, Q.Y. Feng, J. Wang, Z. Xu, P.H. Zhang, Mater. Charact. 125, 123 (2017)

    CAS  Article  Google Scholar 

  5. [5]

    C. Xu, J.P. Pan, T. Nakata, X.G. Qiao, Y.Q. Chi, M.Y. Zheng, S. Kamado, Mater. Charact. 124, 40 (2017)

    CAS  Article  Google Scholar 

  6. [6]

    J.H. He, L. Jin, F.H. Wang, S. Dong, J. Dong, J. Magnes. Alloy. 5, 423 (2017)

    CAS  Article  Google Scholar 

  7. [7]

    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, G.H. Fan, S. Kamado, Mater. Sci. Eng. A 643, 137 (2015)

    CAS  Article  Google Scholar 

  8. [8]

    M. Tane, S. Suzuki, M. Yamasaki, Y. Kawamura, K. Hagihara, H. Kimizuka, Mater. Sci. Eng. A 710, 227 (2018)

    CAS  Article  Google Scholar 

  9. [9]

    Y.H. Kang, X.X. Wang, N. Zhang, H. Yan, R.S. Chen, Mater. Sci. Eng. A 689, 435 (2017)

    CAS  Article  Google Scholar 

  10. [10]

    D. Wang, H.J. Wu, R.Z. Wu, Y. Wang, T. Nodir, J. Magnes. Alloy. 8, 793 (2020)

    Article  CAS  Google Scholar 

  11. [11]

    G. Garces, D.G. Morris, M.A. Munoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, P. Adeva, Acta Mater. 94, 78 (2015)

    CAS  Article  Google Scholar 

  12. [12]

    T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scr. Mater. 51, 107 (2004)

    CAS  Article  Google Scholar 

  13. [13]

    Z.M. Li, D.Q. Wan, Y. Huang, S.T. Ye, Y.L. Hu, J. Magnes. Alloy. 5, 217 (2017)

    CAS  Article  Google Scholar 

  14. [14]

    B. Li, B.G. Teng, G.X. Chen, Mater. Sci. Eng. A 744, 396 (2018)

    Article  CAS  Google Scholar 

  15. [15]

    H. Liu, J. Ju, X.W. Yang, J.L. Yan, D. Song, J.H. Jiang, A.B. Ma, J. Alloys Compd. 704, 509 (2017)

    CAS  Article  Google Scholar 

  16. [16]

    T. Chen, Z.Y. Chen, J.B. Shao, R.K. Wang, L.H. Mao, C.M. Liu, Mater. Des. 152, 1 (2018)

    Article  CAS  Google Scholar 

  17. [17]

    J.J. Gao, J. Fu, N. Zhang, Y.A. Chen, J. Alloys Compd. 768, 1029 (2018)

    CAS  Article  Google Scholar 

  18. [18]

    X. Wu, F.S. Pan, R.J. Cheng, S.Q. Luo, Mater. Sci. Eng. A 726, 64 (2018)

    CAS  Article  Google Scholar 

  19. [19]

    L. Mei, X.P. Chen, G.J. Huang, Q. Liu, J. Alloys Compd. 777, 259 (2019)

    CAS  Article  Google Scholar 

  20. [20]

    J.B. Shao, Z.Y. Chen, T. Chen, R.K. Wang, Y.L. Liu, C.M. Liu, Mater. Sci. Eng. A 731, 479 (2018)

    CAS  Article  Google Scholar 

  21. [21]

    B. Li, B.G. Teng, E.D. Wang, Mater. Sci. Eng. A 765, 138317 (2019)

    CAS  Article  Google Scholar 

  22. [22]

    P. Xu, J.M. Yu, Z.M. Zhang, Materials 12, 2773 (2019)

    CAS  Article  Google Scholar 

  23. [23]

    Z.M. Zhang, Z.M. Yan, Y. Du, G.S. Zhang, J.X. Zhu, L.Y. Ren, Y.D. Wang, Materials 11, 2282 (2018)

    Article  CAS  Google Scholar 

  24. [24]

    X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, W.H. Liu, L.W. Lu, J. Alloys Compd. 724, 528 (2017)

    CAS  Article  Google Scholar 

  25. [25]

    Z. Zhang, P. Cizek, M. Barnett, Scr. Mater. 67, 1015 (2012)

    CAS  Article  Google Scholar 

  26. [26]

    M. Matsuda, S. Ando, M. Nishida, Mater. Trans. 46, 361 (2005)

    CAS  Article  Google Scholar 

  27. [27]

    S. Ando, H. Tonda, Mater. Sci. Forum 350, 43 (2000)

    Article  Google Scholar 

  28. [28]

    R. Wang, J. Dong, L.K. Fan, P. Zhang, W.J. Ding, T. Nonferr, Met. Soc. 18, 189 (2010)

    Google Scholar 

  29. [29]

    X.W. Li, F.Y. Zheng, Y.J. Wu, L.M. Peng, Y. Zhang, D.L. Lin, W.J. Ding, Mater. Lett. 113, 206 (2013)

    CAS  Article  Google Scholar 

  30. [30]

    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 559, 844 (2013)

    CAS  Article  Google Scholar 

  31. [31]

    W.K. Wang, W.Z. Chen, W.C. Zhang, G.R. Cui, E.D. Wang, Mater. Sci. Eng. A 712, 608 (2018)

    CAS  Article  Google Scholar 

  32. [32]

    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6286 (2010)

    Article  CAS  Google Scholar 

  33. [33]

    Y. Wang, H. Choo, Acta Mater. 81, 83 (2014)

    CAS  Article  Google Scholar 

  34. [34]

    R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, Philos. Mag. 7, 45 (1962)

    CAS  Article  Google Scholar 

  35. [35]

    E. Oñorbe, G. Garcés, P. Pérez, S. Cabezas, M. Klaus, C. Genzel, E. Frutos, P. Adeva, Scr. Mater. 65, 719 (2011)

    Article  CAS  Google Scholar 

  36. [36]

    A. Kelly, G.J. Davies, Metall. Rev. 10, 1 (1965)

    CAS  Article  Google Scholar 

  37. [37]

    E. Oñorbe, G. Garcés, P. Pérez, P. Adeva, J. Mater. Sci. 47, 1085 (2012)

    Article  CAS  Google Scholar 

  38. [38]

    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, T. Umakoshi, Nonferr. Met. Soc. 20, 1259 (2010)

    CAS  Article  Google Scholar 

  39. [39]

    Y.F. Wang, F. Zhang, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, J. Hu, Mater. Sci. Eng. A 745, 149 (2019)

    CAS  Article  Google Scholar 

  40. [40]

    X. Liu, B.W. Zhua, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen, Mater. Sci. Eng. A 722, 98 (2018)

    Article  CAS  Google Scholar 

  41. [41]

    Y.N. Wang, C. Xie, Q.H. Fang, X. Liu, M.H. Zhang, Y.W. Liu, L.X. Li, Int. J. Solids. Struct. 102–103, 230 (2016)

    Article  CAS  Google Scholar 

  42. [42]

    B.W. Zhu, X. Liu, C. Xie, J. Su, P.C. Guo, C.P. Tang, W.H. Liu, J. Mater. Sci. Technol. 50, 59 (2020)

    Article  Google Scholar 

  43. [43]

    T. Chen, Z.Y. Chen, J.B. Shao, R.K. Wang, L.H. Mao, C.M. Liu, Mater. Sci. Eng. A 750, 31 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the National Natural Science Foundation of China (No. 51875127).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bugang Teng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wu, J. & Teng, B. Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg–Gd–Y–Zn–Zr Sheets Through Hot Rolling. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-021-01189-2

Download citation

Keywords

  • Final rolling reduction
  • Texture characteristic
  • Interdendritic 14H-LPSO phases distribution
  • Tensile property