Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering

Abstract

In this study, Cu/WS2 self-lubricating composites are fabricated by spark plasma sintering. Interfacial microstructure and its effect on mechanical and tribological properties are investigated. High sintering temperature at 850 °C promotes decomposition of WS2 and its following interfacial reaction with Cu to form Cu0.4W0.6 nanoparticles and Cu2S, enhancing mechanical properties as well as wear resistance of the composites. But the destruction of WS2 leads to a high friction coefficient. On the contrary, for the composites sintered at 750 °C, a nanoscale diffusion zone forms at the Cu/WS2 interface. WS2 lubricant retains its lamellar structure. The composite shows excellent self-lubrication performance, with a low friction coefficient of 0.16. However, its mechanical properties are low, and the wear rate is one magnitude higher.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    Y. Watanabe, Wear 264, 624 (2008)

    CAS  Article  Google Scholar 

  2. [2]

    M.K.A. Ali, X.J. Hou, Tribol. Lett. 71, 67 (2019)

    Google Scholar 

  3. [3]

    X. Shi, Z. Xu, M. Wang, W. Zhai, Q. Zhang, Wear 303, 486 (2013)

    CAS  Article  Google Scholar 

  4. [4]

    T.R. Prabhu, M. Arivarasu, Y. Chodancar, N. Arivazhagan, G. Sumanth, R.K. Mishra, Tribol. Lett. 78, 67 (2019)

    Google Scholar 

  5. [5]

    J. Kovacik, S. Emmer, J. Bielek, L. Kelesi, Wear 265, 417 (2008)

    CAS  Article  Google Scholar 

  6. [6]

    K. Rajkumar, S. Aravindan, Tribol. Int. 57, 282 (2013)

    CAS  Article  Google Scholar 

  7. [7]

    X. Jiang, J. Song, Y. Su, Y. Zhang, L. Hu, Tribol. Lett. 66, 143 (2018)

    Article  Google Scholar 

  8. [8]

    K.P. Furlan, J.D.B. del Mello, A.N. Klein, Tribol. Int. 120, 280 (2018)

    CAS  Article  Google Scholar 

  9. [9]

    M.G. Mohammad, N. Aram, Trans. Nonferrous Met. Soc. China 28, 946 (2018)

    Article  Google Scholar 

  10. [10]

    T. Li, D. Yi, J. Hu, J. Xu, J. Liu, B. Wang, J. Alloys Compd. 723, 345 (2017)

    CAS  Article  Google Scholar 

  11. [11]

    L. Rapoport, V. Leshchinsky, M. Lvovsky, O. Nepomnyashchy, Y. Volovik, R. Tenne, Wear 252, 518 (2002)

    CAS  Article  Google Scholar 

  12. [12]

    H. Cao, Z. Qian, L. Zhang, J. Xiao, K. Zhou, Tribol. Trans. 57, 1037 (2014)

    CAS  Article  Google Scholar 

  13. [13]

    S. Huang, Y. Feng, H. Liu, K. Ding, G. Qian, Mater. Sci. Eng. A 560, 685 (2013)

    CAS  Article  Google Scholar 

  14. [14]

    G. Qian, Y. Feng, Y. Chen, F. Mo, Y. Wang, W. Liu, Trans. Nonferrous Met. Soc. China 25, 1986 (2015)

    CAS  Article  Google Scholar 

  15. [15]

    J. Zhou, C. Ma, X. Kang, L. Zhang, X. Liu, Trans. Nonferrous Met. Soc. China 28, 1176 (2018)

    CAS  Article  Google Scholar 

  16. [16]

    J. Xiao, W. Zhang, C. Zhang, Wear 412–413, 109 (2018)

    Article  Google Scholar 

  17. [17]

    Q. Wang, M. Chen, Z. Shan, C. Sui, L. Zhang, S. Zhu, F. Wang, J. Mater. Sci. Technol. 33, 1416 (2017)

    CAS  Article  Google Scholar 

  18. [18]

    Z. Hu, Z. Zhang, X. Cheng, F. Wang, Y. Zhang, S. Li, Mater. Des. 191, 108662 (2020)

    CAS  Article  Google Scholar 

  19. [19]

    L. Huang, L. Jiang, T.D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines, J.M. Schoenung, Acta Mater. 122, 19 (2017)

    CAS  Article  Google Scholar 

  20. [20]

    X. Wang, L. Jiang, D.L. Zhang, I.J. Beyerlein, S. Mahanjan, T.J. Rupert, E.J. Lavernia, J.M. Schoenung, Acta Mater. 146, 12 (2018)

    CAS  Article  Google Scholar 

  21. [21]

    F. Nazeer, Z. Ma, L.H. Gao, A. Malik, M.A. Khan, F.C. Wang, H.Z. Li, Mater. Sci. Technol. 35, 1770 (2019)

    CAS  Article  Google Scholar 

  22. [22]

    C. Yang, L.M. Kang, X.X. Li, W.W. Zhang, D.T. Zhang, Z.Q. Fu, Y.Y. Li, L.C. Zhang, E.J. Lavernia, Acta Mater. 132, 491 (2017)

    CAS  Article  Google Scholar 

  23. [23]

    X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge, D.D. Wang, Mater. Des. 140, 431 (2018)

    CAS  Article  Google Scholar 

  24. [24]

    W.J. Schutte, J.L. De Boer, F. Jellinek, J. Solid State Chem. 70, 207 (1987)

    CAS  Article  Google Scholar 

  25. [25]

    L. Feng, Z. Wang, Z. Liu, Solid State Commun. 187, 43 (2014)

    CAS  Article  Google Scholar 

  26. [26]

    U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CSC Press, Boca Raton, 2010)

    Google Scholar 

  27. [27]

    Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41, 763 (2006)

    CAS  Article  Google Scholar 

  28. [28]

    N. Chawake, P. Ghosh, L. Raman, A.K. Srivastav, T. Paul, S.P. Harimkar, J. Eckert, R.S. Kottada, Scr. Mater. 161, 36 (2019)

    CAS  Article  Google Scholar 

  29. [29]

    C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, E.J. Lavernia, Scr. Mater. 139, 96 (2017)

    CAS  Article  Google Scholar 

  30. [30]

    X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, E.J. Lavernia, Scr. Mater. 151, 47 (2018)

    CAS  Article  Google Scholar 

  31. [31]

    Y. Liao, B. Zhang, M. Chen, J. Wang, S. Zhu, F. Wang, Corros. Sci. 167, 108526 (2020)

    CAS  Article  Google Scholar 

  32. [32]

    E. Selvi, Y. Ma, R. Aksoy, A. Ertas, A. White, J. Phys. Chem. Solids 67, 2183 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Fundamental Research Funds for the Central Universities (Nos. N180212008 and N181003001), the National Natural Science Foundation of China (No. 51701224), and the Ministry of Industry and Information Technology Project (No. MJ-2017-J-99).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minghui Chen.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Chen, M., Wang, Q. et al. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-020-01187-w

Download citation

Keywords

  • Self-lubricating composites
  • Interfacial microstructure
  • Wear
  • Fracture