Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media


The tribocorrosion behavior and degradation mechanism of 316L stainless steel, in four typically industrial corrosion media, under different potentials, were studied. The results indicated that they strongly depended on corrosion medium and electrode potential. When the potential increased from cathodic protection region to anodic region, corrosion was accelerated. It dramatically promoted mechanical wear which even dominated the total material loss. As a result, the total material loss increased sharply, though the material degradation directly caused by corrosion was slight. This phenomenon was more noticeable when the media were more aggressive. Especially in NaCl solution, the occurrence of pitting corrosion at anodic potential dramatically accelerated the degradation of the stainless steel. There was a special case in NaOH solution under cathodic protection potential. The corrosive reaction could still occur and couple with wear, which led to the abnormally great material loss compared with that in other corrosion media.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. [1]

    P. Ponthiaux, F. Wenger, D. Drees, J.P. Celis, Wear 256, 459 (2004)

    CAS  Article  Google Scholar 

  2. [2]

    R.J.K. Wood, Wear 261, 1012 (2006)

    CAS  Article  Google Scholar 

  3. [3]

    A. Yano, A. Sakanishi, F. Takahashi, S. Shirai, Y. Uchida, K. Fujita, F. Kikkawa, K. Fujioka, T. Kawazoe, K. Saki, Tribol. Trans. 50, 13 (2007)

    CAS  Article  Google Scholar 

  4. [4]

    L. Shan, Y. Wang, Y. Zhang, Q. Zhang, Q. Xue, Wear 362–363, 97 (2016)

    Article  Google Scholar 

  5. [5]

    J. Chen, Q. Zhang, Q. Li, S. Fu, J. Wang, Trans. Nonferr. Met. Soc. China 24, 1022 (2014)

    CAS  Article  Google Scholar 

  6. [6]

    A. Dalmau, C. Richard, A.I. Muñoz, Tribol. Int. 121, 167 (2018)

    CAS  Article  Google Scholar 

  7. [7]

    Z. Wang, Y. Yan, Y. Wang, Y. Su, L. Qiao, J. Mater. Sci. Technol. 46, 98 (2020)

    Article  Google Scholar 

  8. [8]

    D. Landolt, S. Mischler, M. Stemp, Electrochim. Acta 46, 3913 (2001)

    CAS  Article  Google Scholar 

  9. [9]

    Z. Wang, Y. Yan, Y. Su, L. Qiao, Appl. Surf. Sci. 406, 319 (2017)

    CAS  Article  Google Scholar 

  10. [10]

    Y. Zhang, X. Yin, J. Wang, F. Yan, Corros. Sci. 88, 423 (2014)

    CAS  Article  Google Scholar 

  11. [11]

    Z. Wang, Y. Yan, Y. Su, L. Qiao, Electrochim. Acta 298, 756 (2018)

    Article  Google Scholar 

  12. [12]

    P. Jemmely, S. Mischler, D. Landolt, Tribol. Int. 32, 295 (1999)

    CAS  Article  Google Scholar 

  13. [13]

    R. Priya, C. Mallika, U.K. Mudali, Wear 310, 90 (2014)

    CAS  Article  Google Scholar 

  14. [14]

    A. Dalmau, W. Rmili, C. Richard, A. Igual-Muñoz, Wear 368–369, 146 (2016)

    Article  Google Scholar 

  15. [15]

    E. Huttunen-Saarivirta, L. Kilpi, T.J. Hakala, L. Carpen, H. Ronkainen, Tribol. Int. 95, 358 (2016)

    CAS  Article  Google Scholar 

  16. [16]

    Y. Sun, V. Rana, Mater. Chem. Phys. 129, 138 (2011)

    CAS  Article  Google Scholar 

  17. [17]

    Y. Yan, A. Neville, D. Dowson, Tribol. Int. 40, 1492 (2007)

    CAS  Article  Google Scholar 

  18. [18]

    J. Perret, E. Boehm-Courjault, M. Cantoni, S. Mischler, A. Beaudouin, W. Chitty, J.P. Vernot, Wear 269, 383 (2010)

    CAS  Article  Google Scholar 

  19. [19]

    B.A. Obadele, A. Andrews, M.B. Shongwe, P.A. Olubambi, Mater. Chem. Phys. 171, 239 (2016)

    CAS  Article  Google Scholar 

  20. [20]

    H. Krawiec, V. Vignal, O. Heintz, P. Ponthiaux, F. Wenger, J. Electrochem. Soc. 155, C127 (2008)

    CAS  Article  Google Scholar 

  21. [21]

    S. Mischler, S. Debaud, D. Landolt, J. Electrochem. Soc. 145, 750 (1998)

    CAS  Article  Google Scholar 

  22. [22]

    Z. Wang, Y. Yan, L. Qiao, J. Mater. Sci. 55, 13351 (2020)

    CAS  Article  Google Scholar 

  23. [23]

    A. Iwabuchi, J.W. Lee, M. Uchidate, Wear 263, 492 (2007)

    CAS  Article  Google Scholar 

  24. [24]

    Y. Zhang, X.Y. Yin, F.Y. Yan, Mater. Chem. Phys. 179, 273 (2016)

    CAS  Article  Google Scholar 

  25. [25]

    Standard Guide for Determining Synergism Between Wear and Corrosion. ASTM (2016)

  26. [26]

    M.T. Mathew, P. SrinivasaPai, R. Pourzal, A. Fischer, M.A. Wimmer, Adv. Tribol. 145, 1 (2009)

    Article  Google Scholar 

  27. [27]

    J.A. Richardson, Shreir’s Corros. 2, 1191 (2010)

    Article  Google Scholar 

  28. [28]

    Y. Sun, E. Haruman, Corros. Sci. 53, 4131 (2011)

    CAS  Article  Google Scholar 

  29. [29]

    Y. Sun, E. Haruman, Surf. Coat. Technol. 205, 4280 (2011)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 51801016), the Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0134), the Chongqing Talent Plan: Leading Talents in Innovation and Entrepreneneurship (No. CQYC201903051) and the Scientific Research Foundation of Chongqing University of Technology (No. 2019ZD02).

Author information



Corresponding authors

Correspondence to Zhongwei Wang or Yanlong Ma.

Additional information

Available online at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Wang, Z. & Ma, Y. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media. Acta Metall. Sin. (Engl. Lett.) (2021).

Download citation


  • 316L stainless steel
  • Tribocorrosion
  • Wear
  • Corrosion