Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure

Abstract

In this paper, microstructure characteristics and phase transitions of Fe-19 wt%Cr-9 wt%Ni nanocrystalline alloy are comprehensively studied during the mechanical alloying and hot pressing sintering processes. Corrosion resistance of the sintered Fe-19 wt%Cr-9 wt%Ni nanocrystalline alloy samples is further analyzed. During the mechanical alloying process, Fe-19 wt%Cr-9 wt%Ni nanocrystalline alloy powders mainly composed of metastable ferrite phase are obtained after mechanical alloying for 8, 16 and 24 h, respectively. In the subsequent hot pressing sintering process, the phase transitions (from ferrite to austenite) occur from 650 to 750 °C for Fe-19 wt%Cr-9 wt%Ni alloy powders milled for 24 h. When the sintering temperature is raised to 1050 °C for 1 h, the ferrite phase has transformed into austenite phase completely, and the obtained grain size of sintered Fe-19 wt%Cr-9 wt%Ni alloy is around 40 nm. Electrochemistry test of the sintered Fe-19 wt%Cr-9 wt%Ni alloy has been operated in 0.5 mol L−1 H2SO4 solution to show the corrosion resistance properties. Results show that the sintered Fe-19 wt%Cr-9 wt%Ni alloy exhibits excellent corrosion resistance, which is proved by higher self-corrosion potential, lower self-corrosion current density and larger capacitive reactance, compared with that of commercial 304 stainless steel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    T.T. Sasaki, T. Ohkubo, K. Hono, Acta. Mater. 57, 3529 (2009)

    CAS  Article  Google Scholar 

  2. [2]

    Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362, 1925 (2018)

    Article  CAS  Google Scholar 

  3. [3]

    Z.X. Hou, X.Y. Li, K. Lu, Science 360, 526 (2018)

    Article  CAS  Google Scholar 

  4. [4]

    W. Len, Y. Wang, Y. Zhou, L. Guo, J.H. Ouyang, Corros. Sci. 53, 1 (2011)

    Article  CAS  Google Scholar 

  5. [5]

    G. Wu, K.C. Chan, L. Zhu, L. Sun, J. Lu, Nature 545, 80 (2017)

    CAS  Article  Google Scholar 

  6. [6]

    Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta. Mater. 65, 85 (2014)

    CAS  Article  Google Scholar 

  7. [7]

    D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, M. Kawasaki, J. Jang, J. Mater. Res. 30, 2804 (2015)

    CAS  Article  Google Scholar 

  8. [8]

    R. Lei, S. Xu, M. Wang, H. Wang, Mater. Sci. Eng. A 586, 367 (2013)

    CAS  Article  Google Scholar 

  9. [9]

    C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, J. Mater. Sci. 43, 7264 (2008)

    CAS  Article  Google Scholar 

  10. [10]

    M. Kapoor, G.B. Thompson, Curr. Opin. Solid State Mater. Sci 19, 138 (2014)

    Article  CAS  Google Scholar 

  11. [11]

    X.H. Shi, Y.Z. Chen, X.Y. Ma, H.T. Wang, F. Liu, Mater. Charact. 103, 58 (2015)

    CAS  Article  Google Scholar 

  12. [12]

    Z.X. Hang, N.Q. Vo, P. Bellon, R.S. Averback, Acta. Mater. 59, 5332 (2011)

    Article  CAS  Google Scholar 

  13. [13]

    W. Liu, C. Zhang, Z. Yang, Z. Xia, Appl. Surf. Sci. 292, 556 (2014)

    CAS  Article  Google Scholar 

  14. [14]

    J.M. Tao, X.K. Zhu, R.O. Scattergood, C.C. Koch, Mater. Des. 50, 22 (2013)

    CAS  Article  Google Scholar 

  15. [15]

    L. Lu, L.B. Wang, B.Z. Ding, K. Lu, Mater. Sci. Eng. A 286, 125 (2000)

    Article  Google Scholar 

  16. [16]

    M. Azimi, G.H. Akbari, J. Alloys Compd. 555, 112 (2013)

    CAS  Article  Google Scholar 

  17. [17]

    R.S. Lei, M.P. Wang, M.X. Guo, Z. Li, Q.Y. Dong, Trans. Nonferrous Met. Soc. China 19, 272 (2009)

    CAS  Article  Google Scholar 

  18. [18]

    J.M. Dake, C.E.K. Iii, Scr. Mater. 66, 390 (2012)

    CAS  Article  Google Scholar 

  19. [19]

    K.A. Darling, B.K. Vanleeuwen, J.E. Semones, C.C. Koch, R.O. Scattergood, L.J. Kecskes, S.N. Mathaudhu, Mater. Sci. Eng. A 528, 4365 (2011)

    Article  CAS  Google Scholar 

  20. [20]

    X. Li, W. Liu, Y. Xu, C.S. Liu, B.C. Pan, Y.F. Liang, Q.F. Fang, J.L. Chen, G.N. Luo, G.H. Lu, Z.G. Wang, Acta Mater. 109, 115 (2016)

    CAS  Article  Google Scholar 

  21. [21]

    V.S. Saji, R. Cook, Corrosion Protection and Control Using Nanomaterials (Woodhead Publishing, Cambridge, 2012).

    Google Scholar 

  22. [22]

    M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006)

    CAS  Article  Google Scholar 

  23. [23]

    C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001)

    CAS  Article  Google Scholar 

  24. [24]

    C. Suryanarayana, E. Ivanov, V. Boldyrev, Mater. Sci. Eng. A 304, 151 (2001)

    Article  Google Scholar 

  25. [25]

    J.B. Zhou, K.P. Rao, J. Alloys Compd. 384, 125 (2004)

    CAS  Article  Google Scholar 

  26. [26]

    B. Mozafari, M.R. Rahimipour, E. Salahi, S. Farhikhteh, J. Alloys Compd. 481, 616 (2009)

    CAS  Article  Google Scholar 

  27. [27]

    L.H. Tian, M. Fu, W. Xiong, Materials 11, 320 (2018)

    Article  CAS  Google Scholar 

  28. [28]

    M. Krasnowski, S. Gierlotka, S. Ciołek, T. Kulik, Adv. Powder Technol. 30, 1312 (2019)

    CAS  Article  Google Scholar 

  29. [29]

    X. Wen, G. Jin, X.J. Pang, Z.B. Cai, Z.H. Zhang, X.F. Cui, H.D. Wang, B.S. Xu, Mater. Rev. 31, 79 (2017)

    Google Scholar 

  30. [30]

    C.F. Sun, P.P. Li, S.Q. Xi, Y. Zhou, S.W. Li, X.G. Yang, Mater. Sci. Eng. A 728, 144 (2018)

    CAS  Article  Google Scholar 

  31. [31]

    C. Suryanarayana, M. Norton, X-Ray Diffraction: A Practical Approach (Springer, Berlin, 1998).

    Google Scholar 

  32. [32]

    C.F. Sun, X.N. Hai, S.Q. Xi, Z. Fan, P.P. Li, W. Wang, J. Alloys Compd. 731, 667 (2018)

    CAS  Article  Google Scholar 

  33. [33]

    M.H. Enayati, E. Dastanpoor, Metall. Mater. Trans. A 44, 3984 (2013)

    CAS  Article  Google Scholar 

  34. [34]

    C. Between, N. As, Modern Developments in Powder Metallurgy (Plenum Press, Berlin, 1973).

    Google Scholar 

  35. [35]

    C.F. Sun, X.F. Dang, S.W. Li, Rare Met. Mater. Eng. 45, 3115 (2016)

    CAS  Article  Google Scholar 

  36. [36]

    L. Liu, Y. Li, F. Wang, Electrochim. Acta 54, 768 (2008)

    CAS  Article  Google Scholar 

  37. [37]

    Z.J. Zheng, Y. Gao, Y. Gui, M. Zhu, Corros. Sci. 54, 60 (2012)

    CAS  Article  Google Scholar 

  38. [38]

    H. Maleki-Ghaleh, K. Hajizadeh, E. Aghaie, S. Ghobadi Alamdari, M.G. Hosseini, M.H. Fathi, K.O. Zaltin, K.J. Kurzydlowski, Corrosion 71, 367 (2015)

    Article  Google Scholar 

  39. [39]

    R.K. Gupta, R.K. Singh Raman, C.C. Koch, J. Mater. Sci. 47, 6118 (2012)

    CAS  Article  Google Scholar 

  40. [40]

    R.K. Gupta, R.K. Singh Raman, C.C. Koch, Mater. Sci. Eng. A 494, 253 (2008)

    Article  CAS  Google Scholar 

  41. [41]

    D. Xu, E.H. Han, Y. Xu, Prog. Nat. Sci. 26, 117 (2016)

    CAS  Article  Google Scholar 

  42. [42]

    B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357, 1029 (2017)

    CAS  Article  Google Scholar 

  43. [43]

    M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, C.C. Tasan, Science 355, 1055 (2017)

    CAS  Article  Google Scholar 

  44. [44]

    G. Günter, Solid State Phase Transformations (Springer, Berlin, 2004).

    Google Scholar 

  45. [45]

    K. Chvátalová, J. Houserová, M. Šob, J. Vrestal, J. Alloys Compd. 378, 71 (2004)

    Article  CAS  Google Scholar 

  46. [46]

    M.H. Enayati, M.R. Bafandeh, J. Alloys Compd. 454, 1 (2008)

    Article  CAS  Google Scholar 

  47. [47]

    H. Kotan, K.A. Darling, Mater. Charact. 138, 186 (2018)

    CAS  Article  Google Scholar 

  48. [48]

    G.V. Raynor, Trans. Faraday Soc. 45, 698 (1949)

    CAS  Article  Google Scholar 

  49. [49]

    C.F. Sun, S.Q. Xi, Y. Zhang, X.X. Zheng, J.E. Zhou, Acta Metall Sin.-Engl. Lett. 28, 1074 (2015)

    CAS  Article  Google Scholar 

  50. [50]

    S.Q. Xi, K.S. Zuo, X.G. Li, G. Ran, J.E. Zhou, Acta Mater. 56, 6050 (2008)

    CAS  Article  Google Scholar 

  51. [51]

    R.A. Andrievski, J. Mater. Sci. 49, 1449 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51271143 and 51705391), the Fundamental Research Funds for the Central Universities, Key and Shaanxi creative talents promotion plan-technological innovation team (No. 2017KCT-05) and the Project of equipment pre-research field fund (No. 6140922010301). We also thank the Instrument Analysis Center of Xi’an Jiaotong University for providing characterization analysis. The authors are grateful to Dr. Panpan Li and Wei Yang for their kindly assistance in polishing our paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shengqi Xi.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Xi, S., Dang, X. et al. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-020-01178-x

Download citation

Keywords

  • Mechanical alloying
  • Hot pressing sintering
  • Nanocrystalline alloy
  • Phase transition
  • Corrosion resistance